2006 - IEEE Fellow For contributions to physical design automation of very large scale integrated (VLSI) circuits.
His primary scientific interests are in Routing, Integrated circuit design, Physical design, Algorithm and Electronic engineering. His research in Routing intersects with topics in Application-specific integrated circuit, Metric, Mathematical optimization, Floorplan and Integrated circuit layout. His Integrated circuit design study incorporates themes from Place and route, Net, Steiner tree problem and Parallel computing.
The Physical design study combines topics in areas such as Distributed computing, Design for manufacturability and Benchmark. His study on Algorithm also encompasses disciplines like
The scientist’s investigation covers issues in Routing, Electronic engineering, Mathematical optimization, Algorithm and Integrated circuit design. His Routing research incorporates elements of Metric, Physical design, Steiner tree problem, Very-large-scale integration and Integrated circuit layout. His research integrates issues of Delay calculation, Elmore delay, Buffer and Interconnection in his study of Electronic engineering.
His Algorithm research includes themes of Heuristics, Set, Speedup and Cluster analysis. His research investigates the connection between Cluster analysis and topics such as Netlist that intersect with problems in Theoretical computer science. Charles J. Alpert has researched Integrated circuit design in several fields, including Process, Placement, Computer hardware and Slew rate.
Charles J. Alpert spends much of his time researching Routing, Electronic engineering, Physical design, Integrated circuit design and Real-time computing. His Routing research includes elements of Distributed computing, Computer engineering, Metric, Steiner tree problem and Netlist. His Metric research integrates issues from Mathematical optimization, Network topology, Application-specific integrated circuit and Data mining.
His Electronic engineering research incorporates elements of Lithography and Electrical engineering, Integrated circuit. His Physical design research incorporates themes from Macro, Design flow and Benchmark. His Integrated circuit design research is multidisciplinary, incorporating perspectives in Function, Process and Coupling.
His main research concerns Routing, Physical design, Placement, Benchmark and Suite. The various areas that he examines in his Routing study include Distributed computing and Metric. His Physical design study frequently involves adjacent topics like Integrated circuit design.
Charles J. Alpert combines subjects such as Standard cell, Timing closure, Design closure and Parallel computing with his study of Placement. His biological study spans a wide range of topics, including Smoothing, Algorithm, Reliability engineering and Electronic design automation. Charles J. Alpert has included themes like Application-specific integrated circuit, Computer engineering, Real-time computing, Very-large-scale integration and Datapath in his Benchmark study.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
Recent directions in netlist partitioning: a survey
Charles J. Alpert;Andrew B. Kahng.
Integration (1995)
Multilevel circuit partitioning
C.J. Alpert;Jen-Hsin Huang;A.B. Kahng.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (1998)
Buffer insertion for noise and delay optimization
C.J. Alpert;A. Devgan;S.T. Quay.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (1999)
The ISPD98 circuit benchmark suite
Charles J. Alpert.
international symposium on physical design (1998)
A clock distribution network for microprocessors
P.J. Restle;T.G. McNamara;D.A. Webber;P.J. Camporese.
IEEE Journal of Solid-state Circuits (2001)
A practical methodology for early buffer and wire resource allocation
C.J. Alpert;Jiang Hu;S.S. Sapatnekar;P.G. Villarrubia.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2003)
Handbook of Algorithms for Physical Design Automation
Charles J. Alpert;Dinesh P. Mehta;Sachin S. Sapatnekar.
(2008)
Wire segmenting for improved buffer insertion
Charles Alpert;Anirudh Devgan.
design automation conference (1997)
Spectral Partitioning: The More Eigenvectors, The Better
Charles J. Alpert;So-Zen Yao.
design automation conference (1995)
Spectral partitioning with multiple eigenvectors
Charles J. Alpert;Andrew B. Kahng;So-Zen Yao.
Discrete Applied Mathematics (1999)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
University of California, San Diego
Texas A&M University
Synopsys (United States)
University of Minnesota
Facebook (United States)
The University of Texas at Austin
Chinese University of Hong Kong
Iowa State University
IBM (United States)
King Abdullah University of Science and Technology
Ghent University
Technical University of Berlin
Search for Extraterrestrial Intelligence
Institute for Atomic and Molecular Physics
Oxford BioMedica (United Kingdom)
Uppsala University
Florida International University
Tokai University
Argonne National Laboratory
National Institutes of Health
McMaster University
California Institute of Technology
Max Planck Society
New York University
The University of Texas Southwestern Medical Center
University of South Florida