If you’re considering a degree in electrical engineering, you might have come across the Bureau of Labor Statistics’ job growth rate forecast through 2028 in this field: it’s slower-than-average (BLS, 2019). But no doubt, the world will need more electrical engineers in the future. They will be involved in developments in electricity, electronics and communication networks.
The 4th Industrial Age requires the skills and knowledge of an electrical engineer as technological boundaries in the fields of artificial intelligence, smart robotics and the metaverse are pushed further into more industries. Spurred by one of man’s greatest achievements–the discovery of electricity–electrical engineering has been at the cutting edge of technological advancements since the second industrial age (Niiler, 2019), from Edison’s incandescent lamp invention to electric automobiles of today..
To help you understand if electrical engineering is the right career path, this article will shed some light on the matter. This will dissect electrical engineering and lay bare all the details you need to know about this occupation, from its educational requirements and potential jobs to the average salary of electrical engineers. With this information, students and parents can make astute decisions as regards electrical engineering.
According to Merriam-Webster’s Collegiate Encyclopedia, electrical engineering is a branch of engineering that deals with the practical application of electricity in all its forms, including those of electronics (Stevens, 2000). Put differently, electrical engineering is a field concerned with the study and application of electricity, electronics, and electromagnetism (Kosky, Balmer, Keat, & Wise, 2009).
As an occupation, electrical engineering deals with the design, building, improvement, and maintenance of electrical machinery, control systems, and equipment. Electrical engineering, once a sub-branch of physics, became a distinct discipline in 1900 (Edmondson, 2012). Today, the field is split into two distinct sub-fields, namely, electrical engineering and electronics engineering.
Electrical engineering, as a subfield, deals with power systems, electric lights, and electric apparatus. Electronics engineering, on the other hand, is concerned with automatic control systems, radio communication, smaller electronic circuits, radar, store program electronics, computers, and other modern technologies (Stevens, 2000).
Just as there are different engineering degrees, there are also various subfields of electrical engineering. It is a multifaceted discipline applicable to a wide range of industries. To make its practicalities a reality, electrical engineers often concentrate on one or a number of the following subdisciplines:
If you are interested in pursuing a career in electrical engineering you definitely want to glean as much information as possible about this broad field. To make things easier for you, the following statistics reveal important details about the job outlook, work environment, and average annual wage of electrical engineers. In addition, you will find information about the cost of studying engineering and the number of electrical engineering graduates in recent years.
Source: Payscale
People that are fascinated by electricity and its incredible impact on society are perfect candidates for a degree in electrical engineering. Besides, if, as a kid, you once took devices apart to understand how they work, and then used the new insights to create DIY projects, you probably need no extra dose of motivation to pursue a course in electrical engineering.
Passion alone, however, is not enough to earn you a spot in an engineering class. You must also meet a set of other basic requirements, for bachelor’s, master’s, and doctoral degree programs. The requirements vary slightly, depending on your school of choice, but many of the prerequisites for admission are similar.
To study a bachelor’s degree in electrical engineering at a leading university, prospective students should meet the following requirements:
Applicants that fail to meet these requirements should not be deterred; some schools accept undeclared/pre-engineering students. Undeclared students are subjected to some foundational modules in physics, computer science, maths, and engineering. Once they pass the courses, they are integrated into the bachelor’s degree program.
Similarly, an online bachelor’s degree in electrical engineering may include additional requirements to ensure the student’s capability to achieve success in the program. Consult with the offering institution about specific requirements for more information.
The entry requirements for a Master’s degree in electrical engineering vary between universities. But generally, aspiring master’s students should meet the following requirements:
In some top schools, such as Stanford University, students applying for MS programs in electrical engineering are not required to meet any minimum GPA (Stanford University, 2020).
The following are the core requirements that students in the U.S. should meet to get admittance to a doctoral degree program for electrical engineering:
As aforementioned, the prerequisites for the doctoral degree vary between universities. Some schools such as Arizona State University offer direct Ph.D. admission for master’s students graduating from an ABET-accredited electrical engineering program with a GPA of 3.6 or higher (ASU, 2020).
The cost of obtaining a degree in electrical engineering is, without a doubt, a primary concern in which school you go to. Failure to get your numbers right here can impede your progress, and in a worst-case scenario, end your academic adventure before graduation. To make an accurate decision, you have to factor in the cost of tuition, supplies, and books for four to five years of study. Besides, the cost of accommodation, transportation, food, and other personal expenses must be taken into account.
There is no doubt, the overall cost of studying electrical engineering is high. What you ought to know, however, is that the total cost varies widely based on various factors. Some of the key variables include:
There is little published data about the average cost of completing a degree in electrical engineering. We can look at the overall cost of higher education in the U.S., one of the most popular academic destinations, to make an estimate of how much the cost is.
In the academic year 2019 – 2020, the average annual out-of-state tuition and fees at public four-year institutions in the US was $26,820. The average total charges including tuition, room, and board charges are $38,330. Besides, the average in-state tuition and fee at public four-year institutions was $10,440, and the total charges (including room and board) was $21,950 (College Board, 2019).
On the other hand, the average annual published tuition and fees at two-year in-district institutions was $3,730, and the total charges were $12,720. Moreover, the tuition and fee at private non-profit four-year institutions was $36,880, whereas, the average total charges were $49,870 (College Board, 2019).
Additionally, affordable online colleges for engineering degrees may offer better options for students looking to save on other expenses such as accommodation, food, and more. Depending on the institutions, online engineering degrees may cost significantly less than their traditional counterparts.
Source: College Board
As a math-related career, the journey to the crest of the electrical engineering career ladder is truly fascinating and demanding. It is also undoubtedly long because students have to take a full load of classes and earn vital work experience to make it to the top. Having a better understanding of the bitter roots—the lengthy academic and accreditation trek can help prepare both psychologically and financially.
Regardless of your reason for pursuing an electrical engineering course, there are milestones that you have to complete before getting accredited. These steps to becoming an electrical engineer include:
A bachelor’s degree or higher in electrical engineering is the career opener. In fact, many of today’s employers require that entry-level electrical engineers hold at least a degree from a program accredited by the ABET.
An electrical engineering degree is typically designed to take four years to complete. Additionally, an online bachelor’s degree in electrical engineering may take relatively longer depending on the curriculum design. But to complete the degree within this time frame, students that have met the basic requirements (as mentioned above) have to take full-time studies.
Students that opt to take part-time classes or extended research may take over two years to finish the degree. Also, some institutions allow students to take up to five years to finish their undergraduate students, provided they demonstrate unwavering progress throughout the program
Generally, the coursework includes electrical circuit theory, digital systems design, and differential equations. Additionally, electrical engineering majors take part in laboratory work and field studies. Electrical engineering classes are highly technical and challenging and thus, calls for full commitment to post good results.
The next step in becoming a licensed engineer is to take the Fundamentals of Engineering (FE) exams. To be eligible for the exams, applicants must hold a bachelor’s degree from an EAC/ABET-accredited program and earn a passing mark for the FE exam, as stipulated by the examination body.
The FE exam is a six-hour-long appointment that entails two-minutes of a non-disclosure agreement, eight-minutes tutorial, exam (5 hours and 20 minutes), and a 25-minute scheduled break (NCEES, 2020). Students who pass the FE exams earn the title engineers-in-training (EITs) or engineer interns (EIs), and they are fully equipped to take an entry-level job.
From this point onwards, advancement in the electrical engineering career is heavily based on accomplishments and work experience. For this reason, EITs have to begin their search for an entry-level job to earn the four years of post-college work experience required to unlock the next career milestone. Besides discharging their duties, EITs should remain abreast of the emerging technologies in their field of practice.
Lastly, after amassing up to four years of relevant work experience in their chosen engineering discipline, EITs qualify for the Professional Engineer (PE) exam. The exam test for a minimum level of competency in the respective engineering discipline.
But even after earning the PE accreditation, electrical engineers are required to continue their education to maintain the validity of the license. As such, PE licensed engineers ought to keep up with the changes in their field of practice after earning the accreditation. Taking a master’s or a doctoral degree is the next possible course of action.
The choice of electrical engineering college matters as it impacts your employability and post-graduation earnings. Studying at a quality school ensures you get the quality education that sets you for success in your career.
Fortunately, there are tons of great schools across the globe, but unfortunately, one has to slog through hundreds of programs to pinpoint a suitable institution. To make it easy for aspiring electrical engineers to find suitable institutions, this section compiles details about the top schools in this discipline.
Note: The universities mentioned in this section are the top five highest-ranking institutions in electrical engineering as per the 2020 QS World University Ranking data (Top Universities, 2020).
Students pursuing a degree in electrical engineering have to look at the Massachusetts Institute of Technology (MIT). MIT is a private not-for-profit learning institution with a fairly large student population located in the medium-sized city of Cambridge.
Electrical engineering degrees available:
Stanford University has staked its claim for a spot on our list. Like MIT, this is a large private not-for-profit institution of higher learning located in the suburbs of Stanford city. The institution is in the heart of the dynamic Silicon Valley, home to some of the renowned tech giants such as Google, Yahoo, and Hewlett-Packard, to name a few.
Electrical engineering degrees available:
A reputable public university for aspiring electrical engineering to consider. The University of California- Berkeley is a large institution of higher learning located in the city of Berkeley.
Electrical engineering degrees available:
A reputable collegiate research university located in Cambridge, UK, University of Cambridge is the world’s fourth-oldest surviving university (“University of Cambridge,” 2001). The institution ranks high in electrical engineering and is a solid option for students looking to excel at this engineering discipline.
Electrical engineering degrees available:
ETH Zurich is a renowned public research institution, best known for its cutting-edge research and innovation. The institution of higher learning is located in the larger city of Zurich, Switzerland, and is an ideal destination for aspiring electrical engineers.
Electrical engineering degrees available:
Source: Top Universities
As mentioned previously, electrical engineering is a multifaceted discipline. The broadness of this field gives aspiring electronic engineers an incredible catalog of careers they can pursue. It also turns out that there is an endless list of employers looking to tap into the best talent in this discipline. Some of the potential employers include consultancies, manufacturing firms, government agencies, engineering firms, telecommunication companies, computing agencies, energy companies, utility companies, and transport companies, to name a few.
Electrical engineers can be employed by the above-mentioned departments in various capacities. The job duties may entail, but are not limited to:
Thanks to the plethora of career options, some electrical engineers can choose to specialize exclusively in one subdiscipline. Besides, others combine multiple subdisciplines to boost their employability and their potential pay. The following job titles emerge from a respective sub-discipline or type of electrical engineering:
Note: The salary information is culled from the latest U.S. data according to Payscale.com.
Average annual entry-level salary: $73,355
Used interchangeably in the U.S. with an electrical engineer, the term electronic engineer refers to a person tasked with designing, creating, and testing of electronic systems and components. The roles of an electronic and electrical engineer overlap significantly. What sets an electronic engineer from an electrical engineer is that the former hones in on smaller electronic parts, such as resistors, electronic circuits, inductors, diodes, and transistors.
Electronic engineers are highly employable and can find jobs in a long list of areas, including but not limited to aerospace, automotive, defense, electronics, fast-moving consumer goods, marine, materials and metals, power generation, and rail industries.
Average annual entry-level salary: $71,317
Also known as a power systems engineer, a power engineer deals with the generation, distribution, transmission, and utilization of electric power. They also install, maintain, and repair electrical equipment such as generators, transformers, motors, and power electronics.
Power engineers draw a significant part of their theoretical foundation from electrical engineering. Primarily, they are heavily focused on responding to issues related to three-phase alternating current (AC) power and the conversion between AC and direct current (DC) power. Power engineering graduates will most likely end up at a power plant owned by a power company, a wind farm, or an academic institution’s lab.
Average annual entry-level salary: $67,418
The work of a telecommunication engineer involves designing basic circuits, installing telecommunication equipment (such as optical fiber cabling, microwave transmission systems, IP networks, and electronic switching systems), and providing high-speed data transmission services.
Using a wide range of transport media and equipment, telecommunication engineers design network infrastructures. In addition, they offer vital solutions for wireless communication and information transfer, such as radio and satellite communications, wireless telephone services, and broadband technologies.
Beyond the telecommunication industry, telecommunication engineers can find jobs in virtually any industry. Typically, fresh graduates are employed in companies as junior IT specialists to help handle security/firewall systems, ethernet, operating systems, and PC networks. Moreover, telecommunication engineers can find opportunities in research and development, sales and marketing, and teaching.
Average annual entry-level salary: $79,356
A digital signal processing engineer is tasked with establishing, managing, and updating signals, as well as developing algorithms to process these signals more effectively. In a nutshell, they analyze and alter digital signals to improve accuracy and reliability.
A digital signal processing engineer can work in areas such as speech processing, image processing, chip designing, pattern recognition, biomedical signal processing, and radio frequency designs.
Average annual entry-level salary: $68,072
Also known as a control systems engineer, control engineers are responsible for designing and analyzing control systems. They can fix system malfunctions that fall within their area of specialization or relay the problem to other engineers for a quick remedy. Moreover, control engineers are expected to explain technical information about control systems to non-technical coworkers. In a manufacturing environment, control system engineers ensure that human and technological components are working harmoniously to ensure work efficiency.
Average annual entry-level salary: $76,800
As the name suggests, instrumentation engineers are responsible for creating, testing, and maintaining instrumentations in a factory or plant environment. They develop and implement instrumentations that control different processes and manufacturing parameters such as pressure, flow, and temperature.
Instrumentation engineers measure, control, and automate processes. Their skillset makes them valuable assets for process and manufacturing industries such as oil, steel, petrochemical, defense, and power.
Source: Payscale
Electrical engineers play a significant role in society, developing, designing, testing, and supervising the manufacture of electrical equipment. They generally work indoors in offices, but in the case of generation, transmission, and utilization of electricity, they may have to visit outdoor sites. Their skill sets make them employable in a host of industries, including state and federal governments, telecommunications, manufacturing, research and development, and engineering services.
According to the U.S. Bureau of Labor Statistics, in 2018 alone, there were 330,300 electrical and electronics engineering career openings in the U.S. The outlook for a job in this field is not overly impressive since only a mere 8,000 electrical engineer jobs will be added between 2018 and 2028 (U.S. Bureau of Labor Statistics, 2019).
The career outlook aside, the major draw for a career in the electrical engineering space is the lucrative annual salary. On average, electrical engineers take home $80,462 per year, whereas electronic engineers earn a median annual wage of $83,994 (PayScale, 2023).
The salary, however, may vary based on the level of experience of the electrical engineer. For example, entry-level electrical engineers with less than a year of experience earn an average total compensation (including bonus, tips, and overtime) of $70,898 per year. Early career (1-4 years of experience) electrical engineers earn $76,466 and Mid-career (5-9 years of experience) earn $89,108. Lastly, experienced electrical engineers (10-19 years of experience) and late-career (20 years and higher) engineers earn $103,808 and $118,071 per year, respectively (Payscale, 2023).
Source: Payscale
Aspiring electrical engineers looking for inspiration from the pioneers in this industry will be in awe of the people on this list. The following list compiles some of the great talents and most creative electrical engineers to ever live.
These engineers have either been at the forefront of developing new technologies or have leveraged their knowledge to establish enterprises that touch on aspects of leisure, business, and communication.
Nikola Tesla was a Serbian-American electrical engineer famed for his contribution to the invention of modern Alternating Current (AC) electricity supply. Born in Croatia in 1856, Tesla honed his skills in telephony and electrical engineering before immigrating to the U.S. in 1884 to work with another engineering great—Thomas Edison.
Soon, the two innovators parted ways and this gave Tesla an opportunity to create his own ventures. With financial backers by his side, he established companies and laboratories in the U.S. where he developed a range of electrical devices. He patented the AC induction motor and transformer, which were later licensed and commercialized by another ally—George Westinghouse.
George Westinghouse is an American entrepreneur and engineer born in New York in 1846. Famed as a chief business partner of Tesla, Westinghouse saw the potential in AC as a highly effective distribution system.
He bought the idea from its original owner (Tesla) and went all out, putting all his resources into developing and commercializing it. The move put Westinghouse business on a collision course with Thomas Edison’s Direct Current (DC) system. Westinghouse founded 60 companies and secured 360 patents and just 10 years after actualizing his envisioned power plant, he employed over 50,000 people.
Born in 1958 in Los Angeles, USA, Ellen Ochoa has lived an enviable life beautified by her exemplary achievements and contributions in the engineering sector. The former Stanford University graduate (Master’s and Ph.D.) in electrical engineering is renowned as the first Hispanic director and the second female director of the Johnson Space Center. She served numerous technical assignments in the Astronaut office, the pinnacle of which was serving on a nine-day mission aboard the space shuttle Discovery in 1993.
That is, more or less, the basic information that you need to know about electrical engineering. We have explored this discipline from all perspectives, and hopefully, the information revealed in this post will give you a headstart in your decision-making.
As you may have noticed, electrical engineering is quite diverse and the niche offers numerous employment opportunities. According to the U.S. Bureau of Labor Statistics, however, the career outlook in the sector is not one to savor. To suffice, in the next ten years, employment in the electrical and electronics engineering is projected to grow by a meager 2%. In other words, from 2018 to 2028, there will only be 8,000 new employment opportunities in this industry (U.S. Bureau of Labor Statistics, 2019).
Should the bleak employment future be a put off? No, it should not for two main reasons. One, the average employment for electrical engineering is half as fast as the average for all occupations. This means, comparatively, the growth rate is not bad. Second, at $80,462 per year, the annual average salary of electrical engineers is indeed lucrative (PayScale, 2023).
Going by the aforementioned reasons, people with the passion to change society by inventing new products to make the world a better place should not be deterred by the potential career impediments. Parents and educators should put more effort into encouraging young people to pursue courses in electrical engineering. With technological advancement, more innovative electrical products will be required to supplement the resultant demand. In this regard, more electrical and electronic engineers will be required to keep the fire of innovation, ignited by Tesla, Edison, and other pioneers, burning.
References: