- Home
- Best Scientists - Mathematics
- Tristan Rivière

Discipline name
D-index
D-index (Discipline H-index) only includes papers and citation values for an examined
discipline in contrast to General H-index which accounts for publications across all
disciplines.
Citations
Publications
World Ranking
National Ranking

Mathematics
D-index
33
Citations
4,240
129
World Ranking
2242
National Ranking
42

- Mathematical analysis
- Topology
- Geometry

The scientist’s investigation covers issues in Mathematical analysis, Harmonic map, Pure mathematics, Mathematical physics and SPHERES. His study in Domain wall extends to Mathematical analysis with its themes. His Harmonic map research includes themes of Elliptic systems, Schrödinger's cat, Bounded function and Gauge theory.

His Pure mathematics research incorporates elements of Second fundamental form and Mean curvature. Tristan Rivière has included themes like Conformal map, Elliptic curve, Codimension and Compact space in his Second fundamental form study. His Mathematical physics research includes elements of Tourbillon, Calculus of variations, Limit and Degree.

- Conservation laws for conformally invariant variational problems (224 citations)
- Analysis aspects of Willmore surfaces (174 citations)
- Everywhere discontinuous harmonic maps into spheres (133 citations)

His primary scientific interests are in Mathematical analysis, Pure mathematics, Conformal map, Minimal surface and Second fundamental form. His work in the fields of Harmonic map, Compact space and Bounded function overlaps with other areas such as Willmore energy. His Bounded function research incorporates themes from Invariant and Mathematical physics.

In his study, which falls under the umbrella issue of Pure mathematics, Elliptic systems is strongly linked to Class. His Conformal map research is multidisciplinary, relying on both Immersion, Euclidean space and Riemann surface. His Second fundamental form study incorporates themes from Surface and Lipschitz continuity.

- Mathematical analysis (52.73%)
- Pure mathematics (33.94%)
- Conformal map (18.18%)

- Pure mathematics (33.94%)
- Mathematical analysis (52.73%)
- Minimal surface (13.94%)

His scientific interests lie mostly in Pure mathematics, Mathematical analysis, Minimal surface, Elliptic systems and Codimension. His studies deal with areas such as Space and Tree as well as Pure mathematics. The concepts of his Mathematical analysis study are interwoven with issues in Second fundamental form and Resolution.

His Minimal surface research is multidisciplinary, incorporating elements of Geodesic, Existential quantification and Semi-continuity. His study in Elliptic systems is interdisciplinary in nature, drawing from both Class, Divergence and Involution. His work deals with themes such as Combinatorics, Conjecture, Riemannian manifold, Multiplicity and Bounded function, which intersect with Codimension.

- Optimal estimate for the gradient of Green's function on degenerating surfaces and applications (12 citations)
- Energy quantization of Willmore surfaces at the boundary of the moduli space (10 citations)
- A proof of the multiplicity one conjecture for min-max minimal surfaces in arbitrary codimension (9 citations)

- Mathematical analysis
- Topology
- Geometry

His main research concerns Mathematical analysis, Conformal map, Compact space, Second fundamental form and Minimal surface. His work often combines Mathematical analysis and Entropy studies. The various areas that Tristan Rivière examines in his Conformal map study include Euclidean space and Riemann surface.

His research integrates issues of Differential geometry and Cover in his study of Compact space. Tristan Rivière has researched Second fundamental form in several fields, including Green's function, Surface and Critical regime. He works mostly in the field of Minimal surface, limiting it down to topics relating to Codimension and, in certain cases, Bounded function, as a part of the same area of interest.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

Conservation laws for conformally invariant variational problems

Tristan Rivière.

Inventiones Mathematicae **(2007)**

362 Citations

Analysis aspects of Willmore surfaces

Tristan Rivière.

Inventiones Mathematicae **(2008)**

281 Citations

Everywhere discontinuous harmonic maps into spheres

Tristan Rivière.

Acta Mathematica **(1995)**

213 Citations

Linear and Nonlinear Aspects of Vortices: The Ginzburg-andau Model

Frank Pacard;Tristan Rivière.

**(2011)**

196 Citations

Partial Regularity for Harmonic Maps and Related Problems

Tristan Rivière;Michael Struwe.

Communications on Pure and Applied Mathematics **(2008)**

160 Citations

Vortices for a variational problem related to superconductivity

Fabrice Bethuel;Tristan Rivière.

Annales De L Institut Henri Poincare-analyse Non Lineaire **(1995)**

150 Citations

Three-term commutator estimates and the regularity of $\half$-harmonic maps into spheres

Da Lio Francesca;Tristan Rivière.

Analysis & PDE **(2011)**

136 Citations

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin;Tristan Rivière.

Journal of the European Mathematical Society **(1999)**

135 Citations

Linear and Nonlinear Aspects of Vortices

Frank Pacard;Tristan Rivière.

**(2000)**

127 Citations

Quantization effects for −Δu = u(1 − |u|2) in ℝ2

Haïm Brezis;Frank Merle;Tristan Rivière.

Archive for Rational Mechanics and Analysis **(1994)**

121 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

École Polytechnique

Courant Institute of Mathematical Sciences

Peking University

National Research Council (CNR)

ETH Zurich

Institute for Advanced Study

Courant Institute of Mathematical Sciences

Rutgers, The State University of New Jersey

CY Cergy Paris University

Zhejiang University

Georgia Institute of Technology

AstraZeneca (United Kingdom)

Boston University

University of Maine

Chinese Academy of Sciences

Karolinska Institute

Mahidol University

University of Glasgow

Hokkaido University

Aix-Marseille University

University of Washington

Yale University

University of Exeter

University of Kent

Max Planck Society

Something went wrong. Please try again later.