2023 - Research.com Neuroscience in United States Leader Award
2022 - Research.com Best Scientist Award
2014 - Warren Alpert Foundation Prize For seminal contributions to our understanding of neurotransmission and neurodegeneration.
2014 - Ralph W. Gerard Prize in Neuroscience, Society for Neuroscience
2011 - Robert J. and Claire Pasarow Foundation Medical Research Award
2010 - NAS Award in the Neurosciences, U.S. National Academy of Sciences For his seminal discoveries elucidating cellular and molecular bases for synaptic plasticity in the brain.
2009 - Member of the National Academy of Medicine (NAM)
2008 - J. Allyn Taylor International Prize in Medicine, Robarts Research Institute
2006 - Gruber Prize in Neuroscience, Society for Neuroscience
2005 - Perl-UNC Prize, University of North Carolina at Chapel Hill Discovery of Mechanisms that Underlie Long-term Synaptic Plasticity
1999 - Fellow of the American Academy of Arts and Sciences
1994 - Member of the National Academy of Sciences
1989 - W. Alden Spencer Award, College of Physicians and Surgeons
His scientific interests lie mostly in Neuroscience, Excitatory postsynaptic potential, Long-term potentiation, Synaptic plasticity and Neurotransmission. His Neuroscience study combines topics in areas such as NMDA receptor, Postsynaptic potential, Long-term depression and Depolarization. He combines subjects such as Electrophysiology and Anatomy with his study of Excitatory postsynaptic potential.
The concepts of his Long-term potentiation study are interwoven with issues in Glutamate receptor, Hippocampal mossy fiber, Hippocampal formation and Membrane potential. His Synaptic plasticity research is multidisciplinary, relying on both Dendritic spine and Hippocampus. His Neurotransmission research incorporates elements of Endocrinology, Central nervous system, Neurotransmitter and Signal transduction.
His main research concerns Neuroscience, Excitatory postsynaptic potential, AMPA receptor, Long-term potentiation and Neurotransmission. Roger A. Nicoll has researched Neuroscience in several fields, including Synaptic plasticity, Glutamate receptor, Long-term depression and Postsynaptic potential. His Excitatory postsynaptic potential research includes elements of Pyramidal cell, Electrophysiology and Anatomy.
His AMPA receptor study integrates concerns from other disciplines, such as Protein subunit and Cell biology. Roger A. Nicoll combines subjects such as NMDA receptor, Hippocampal mossy fiber, Mossy fiber, Hippocampal formation and Hippocampus with his study of Long-term potentiation. The Neurotransmission study combines topics in areas such as Endocrinology, Glutamatergic and Neurotransmitter.
His primary areas of study are Neuroscience, AMPA receptor, Cell biology, Neurotransmission and Excitatory postsynaptic potential. His studies in Neuroscience integrate themes in fields like Synaptic plasticity, Long-term potentiation, Glutamate receptor and Postsynaptic potential. The Silent synapse and Long-term depression research Roger A. Nicoll does as part of his general AMPA receptor study is frequently linked to other disciplines of science, such as Function, therefore creating a link between diverse domains of science.
His Cell biology study combines topics in areas such as NMDA receptor, Receptor, Protein subunit and Neuroligin. His biological study spans a wide range of topics, including Hippocampal formation, Cerebellum and Voltage-dependent calcium channel. In his research, Biophysics and Membrane-associated guanylate kinase is intimately related to Glutamatergic, which falls under the overarching field of Excitatory postsynaptic potential.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
Long-Term Potentiation--A Decade of Progress?
Robert C. Malenka;Roger A. Nicoll.
Science (1999)
Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses.
Rachel I. Wilson;Roger A. Nicoll.
Nature (2001)
Endocannabinoid signaling in the brain.
Rachel I. Wilson;Roger A. Nicoll.
Science (2002)
Evidence for silent synapses: Implications for the expression of LTP
John T.R. Isaac;Roger A. Nicoll;Robert C. Malenka.
Neuron (1995)
AMPA Receptor Trafficking at Excitatory Synapses
David S Bredt;Roger A Nicoll.
Neuron (2003)
Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models.
Albert Y. Hsia;Eliezer Masliah;Lisa Mcconlogue;Gui Qiu Yu.
Proceedings of the National Academy of Sciences of the United States of America (1999)
PSD-95 Involvement in Maturation of Excitatory Synapses
Alaa El-Din El-Husseini;Eric Schnell;Dane M. Chetkovich;Roger A. Nicoll.
Science (2000)
Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms
Lu Chen;Dane M. Chetkovich;Ronald S. Petralia;Neal T. Sweeney.
Nature (2000)
An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation
Robert C. Malenka;Julie A. Kauer;David J. Perkel;Michael D. Mauk.
Nature (1989)
A G protein couples serotonin and GABAB receptors to the same channels in hippocampus.
R. Andrade;R. C. Malenka;R. A. Nicoll.
Science (1986)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
Stanford University
National Institutes of Health
Johnson & Johnson (United States)
Stanford University
University of Maryland, Baltimore
Charité - University Medicine Berlin
National Institutes of Health
Stanford University
University of Washington
University of Paris-Saclay
University of Notre Dame
China University of Mining and Technology
ETH Zurich
University of Bath
Tianjin University
Memorial Sloan Kettering Cancer Center
Colorado School of Mines
National Institute of Advanced Industrial Science and Technology
University of Gothenburg
Vrije Universiteit Amsterdam
Centers for Disease Control and Prevention
Medical University of South Carolina
United States Geological Survey
University of South Florida
University of Illinois at Chicago
Bentley University