H-Index & Metrics Best Publications

H-Index & Metrics

Discipline name H-index Citations Publications World Ranking National Ranking
Materials Science D-index 59 Citations 9,324 213 World Ranking 3433 National Ranking 854

Overview

What is he best known for?

The fields of study he is best known for:

  • Organic chemistry
  • Gene
  • Oxygen

His primary areas of study are Detection limit, Graphene, Nanotechnology, Aptamer and Nanocomposite. His Detection limit research is multidisciplinary, incorporating elements of Nanoparticle, Photocurrent, Photochemistry and Biosensor. His Photocurrent study integrates concerns from other disciplines, such as Photocatalysis, Ionic liquid, Transmission electron microscopy, Visible spectrum and X-ray photoelectron spectroscopy.

As part of one scientific family, Kun Wang deals mainly with the area of Biosensor, narrowing it down to issues related to the Surface plasmon resonance, and often Accessible surface area and Titanium. His work deals with themes such as Oxide, Nuclear chemistry, Nanocrystal, Selectivity and Electrochemiluminescence, which intersect with Graphene. Kun Wang does research in Nanotechnology, focusing on Quantum dot specifically.

His most cited work include:

  • Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites (274 citations)
  • Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. (167 citations)
  • Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. (166 citations)

What are the main themes of his work throughout his whole career to date?

Kun Wang mainly investigates Detection limit, Graphene, Nanotechnology, Biosensor and Photocurrent. His study in the fields of Linear range under the domain of Detection limit overlaps with other disciplines such as Aptamer. Kun Wang interconnects Oxide, Nanocomposite, Inorganic chemistry, Nanoparticle and Electrochemiluminescence in the investigation of issues within Graphene.

His work in Nanotechnology addresses issues such as Electrochemistry, which are connected to fields such as Colloidal gold and Nuclear chemistry. Kun Wang focuses mostly in the field of Biosensor, narrowing it down to topics relating to Chromatography and, in certain cases, Adsorption. Kun Wang usually deals with Photocurrent and limits it to topics linked to Visible spectrum and Doping.

He most often published in these fields:

  • Detection limit (59.55%)
  • Graphene (45.69%)
  • Nanotechnology (37.83%)

What were the highlights of his more recent work (between 2019-2021)?

  • Detection limit (59.55%)
  • Optoelectronics (26.22%)
  • Aptamer (31.09%)

In recent papers he was focusing on the following fields of study:

His main research concerns Detection limit, Optoelectronics, Aptamer, Photocurrent and Graphene. The concepts of his Detection limit study are interwoven with issues in Quantum dot, Photochemistry, Analyte and Biosensor. Throughout his Aptamer studies, Kun Wang incorporates elements of other sciences such as Nanotechnology and Nanosheet.

Kun Wang has included themes like Bifunctional, Copper oxide and Förster resonance energy transfer in his Nanotechnology study. The study incorporates disciplines such as Visible spectrum and Band gap in addition to Photocurrent. The Graphene study combines topics in areas such as Cobalt, Nanoparticle, Oxide and Electrochemistry.

Between 2019 and 2021, his most popular works were:

  • Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets (25 citations)
  • Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets (25 citations)
  • Insights into the regulatory role of circRNA in angiogenesis and clinical implications (18 citations)

In his most recent research, the most cited papers focused on:

  • Organic chemistry
  • Gene
  • Oxygen

Kun Wang mostly deals with Detection limit, Biosensor, Aptamer, Nanotechnology and Visible spectrum. His Detection limit study combines topics in areas such as Optoelectronics, Repeatability and Electrochemistry. His Biosensor study combines topics from a wide range of disciplines, such as Nanocomposite, Doping and Graphitic carbon nitride.

His Visible spectrum research is multidisciplinary, relying on both Carbon nitride, Nanoparticle, Surface plasmon resonance, Photocurrent and Carbon. Kun Wang has researched Nanoparticle in several fields, including Nanosheet and Charge carrier. His Photocurrent research includes themes of Core shell, Heterojunction, Molybdenum disulfide and Absorption band.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

Best Publications

Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites

Jili Wu;Xiaoping Shen;Lei Jiang;Kun Wang.
Applied Surface Science (2010)

414 Citations

Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals.

Kun Wang;Qian Liu;Qing-Meng Guan;Jun Wu.
Biosensors and Bioelectronics (2011)

253 Citations

Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

Ding Jiang;Qian Liu;Kun Wang;Jing Qian.
Biosensors and Bioelectronics (2014)

250 Citations

Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance

Li Xu;Jiexiang Xia;Hui Xu;Sheng Yin.
Journal of Power Sources (2014)

171 Citations

Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity

Liying Huang;Yeping Li;Hui Xu;Yuanguo Xu.
RSC Advances (2013)

162 Citations

Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing.

Kun Wang;Qian Liu;Xiang-Yang Wu;Qing-Meng Guan.
Talanta (2010)

159 Citations

A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite.

Kun Wang;Qian Liu;Lina Dai;Jiajia Yan.
Analytica Chimica Acta (2011)

156 Citations

Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles.

Yuting Yan;Qian Liu;Xiaojiao Du;Jing Qian.
Analytica Chimica Acta (2015)

149 Citations

Colorimetric aptasensing of ochratoxin A using [email protected] nanoparticles as signal indicator and magnetic separator.

Chengquan Wang;Jing Qian;Kun Wang;Xingwang Yang.
Biosensors and Bioelectronics (2016)

144 Citations

Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

Airong Fei;Qian Liu;Juan Huan;Jing Qian.
Biosensors and Bioelectronics (2015)

136 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

Best Scientists Citing Kun Wang

Huaming Li

Huaming Li

Jiangsu University

Publications: 48

Li Xu

Li Xu

Jiangsu University

Publications: 47

Qin Wei

Qin Wei

University of Jinan

Publications: 30

Jiexiang Xia

Jiexiang Xia

Jiangsu University

Publications: 29

Ruo Yuan

Ruo Yuan

Southwest University

Publications: 27

Khalil Abnous

Khalil Abnous

Mashhad University of Medical Sciences

Publications: 24

Hui Xu

Hui Xu

Zhejiang Sci-Tech University

Publications: 23

Shiyun Ai

Shiyun Ai

Shandong Agricultural University

Publications: 23

Mohammad Ramezani

Mohammad Ramezani

Mashhad University of Medical Sciences

Publications: 22

Yaqin Chai

Yaqin Chai

Southwest University

Publications: 22

Huanshun Yin

Huanshun Yin

Shandong Agricultural University

Publications: 21

Huangxian Ju

Huangxian Ju

Nanjing University

Publications: 20

Hong-Yuan Chen

Hong-Yuan Chen

Nanjing University

Publications: 18

Wei-Wei Zhao

Wei-Wei Zhao

Nanjing University

Publications: 18

Jing-Juan Xu

Jing-Juan Xu

Nanjing University

Publications: 17

Xiaoping Shen

Xiaoping Shen

Jiangsu University

Publications: 17

Something went wrong. Please try again later.