D-Index & Metrics Best Publications

D-Index & Metrics D-index (Discipline H-index) only includes papers and citation values for an examined discipline in contrast to General H-index which accounts for publications across all disciplines.

Discipline name D-index D-index (Discipline H-index) only includes papers and citation values for an examined discipline in contrast to General H-index which accounts for publications across all disciplines. Citations Publications World Ranking National Ranking
Computer Science D-index 40 Citations 9,943 211 World Ranking 5685 National Ranking 17

Overview

What is he best known for?

The fields of study he is best known for:

  • Gene
  • Artificial intelligence
  • Statistics

Jesper Tegnér mainly investigates Neuroscience, Genetics, Regulation of gene expression, Computational biology and Gene regulatory network. The Working memory, Cortex, Prefrontal cortex and Electrophysiology research Jesper Tegnér does as part of his general Neuroscience study is frequently linked to other disciplines of science, such as Spike, therefore creating a link between diverse domains of science. When carried out as part of a general Genetics research project, his work on DNA methylation, Human genome and Gene is frequently linked to work in Network topology, therefore connecting diverse disciplines of study.

The various areas that Jesper Tegnér examines in his Regulation of gene expression study include Transcription factor, Gene expression, Transcriptional regulation, Cellular differentiation and Coronary artery disease. The concepts of his Transcriptional regulation study are interwoven with issues in DNA binding site, Molecular biology, Cap analysis gene expression, Protein–protein interaction and Cell fate determination. Jesper Tegnér combines subjects such as Regression analysis and Bioinformatics with his study of Gene regulatory network.

His most cited work include:

  • The Transcriptional Landscape of the Mammalian Genome (2876 citations)
  • A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data (812 citations)
  • Reverse engineering gene networks using singular value decomposition and robust regression (646 citations)

What are the main themes of his work throughout his whole career to date?

Jesper Tegnér mostly deals with Computational biology, Artificial intelligence, Gene regulatory network, Bioinformatics and Systems biology. His research in Computational biology intersects with topics in Genetics, Gene expression, Cellular differentiation, Gene and Regulation of gene expression. His Cellular differentiation research is multidisciplinary, incorporating elements of Self-organizing map, Chromatin and Cell biology.

His studies in Regulation of gene expression integrate themes in fields like Transcription factor and Gene expression profiling. Jesper Tegnér conducts interdisciplinary study in the fields of Gene regulatory network and Reverse engineering through his research. His work carried out in the field of Systems biology brings together such families of science as Personalized medicine and Data science.

He most often published in these fields:

  • Computational biology (37.56%)
  • Artificial intelligence (15.03%)
  • Gene regulatory network (21.24%)

What were the highlights of his more recent work (between 2018-2021)?

  • Computational biology (37.56%)
  • Artificial intelligence (15.03%)
  • Multi omics (9.84%)

In recent papers he was focusing on the following fields of study:

His primary areas of study are Computational biology, Artificial intelligence, Multi omics, Cell biology and Cancer research. His Computational biology study combines topics in areas such as RNA-Seq, Proteomics, Chromatin, Messenger RNA and splice. His research on Multi omics also deals with topics like

  • Parametric statistics which intersects with area such as Glioblastoma and Profiling,
  • Metabolomics that connect with fields like Omics technologies, Cell physiology and Gene expression.

The Cancer research study combines topics in areas such as Kynurenine pathway, DNA methylation, T cell, Multiple sclerosis and Epigenetics. In his work, Regulation of gene expression is strongly intertwined with Cell cycle, which is a subfield of Cellular differentiation. His research integrates issues of Self-organizing map and Genome in his study of Gene regulatory network.

Between 2018 and 2021, his most popular works were:

  • Causal deconvolution by algorithmic generative models (30 citations)
  • Causal deconvolution by algorithmic generative models (30 citations)
  • Causal deconvolution by algorithmic generative models (30 citations)

In his most recent research, the most cited papers focused on:

  • Gene
  • Artificial intelligence
  • Statistics

His primary areas of investigation include Cellular differentiation, Gene regulatory network, Cellular automaton, Data type and Computational biology. The study incorporates disciplines such as Regulation of gene expression, Multi omics and Adaptation in addition to Cellular differentiation. His Regulation of gene expression study integrates concerns from other disciplines, such as Developmental biology, Cell biology, Transcription factor and Housekeeping gene.

He interconnects Complex system, Biological network, Systems biology and Phase space in the investigation of issues within Gene regulatory network. As a part of the same scientific study, Jesper Tegnér usually deals with the Cellular automaton, concentrating on Dynamical systems theory and frequently concerns with Complex network, Theoretical computer science, Algorithmic information theory and Calculus. His study in Computational biology is interdisciplinary in nature, drawing from both RNA-Seq, Proteomics, Metabolomics and Genomics.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

Best Publications

A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data

Andrew E. Teschendorff;Francesco Marabita;Matthias Lechner;Thomas Bartlett.
Bioinformatics (2013)

1199 Citations

Reverse engineering gene networks using singular value decomposition and robust regression

M. K. S. Yeung;J. Tegner;J. J. Collins.
Proceedings of the National Academy of Sciences of the United States of America (2002)

833 Citations

An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

Timothy Ravasi;Harukazu Suzuki;Carlo Vittorio Cannistraci;Shintaro Katayama.
Cell (2010)

769 Citations

Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling

Jesper Tegnér;M. K. Stephen Yeung;Jeff Hasty;James J. Collins.
Proceedings of the National Academy of Sciences of the United States of America (2003)

545 Citations

The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

Harukazu Suzuki;Alistair R.R. Forrest;Erik Van Nimwegen;Carsten O. Daub.
Nature Genetics (2009)

469 Citations

Data integration in the era of omics: current and future challenges.

David Gomez-Cabrero;Imad Abugessaisa;Dieter Maier;Andrew E. Teschendorff.
BMC Systems Biology (2014)

393 Citations

Mechanism for top-down control of working memory capacity

Fredrik Edin;Torkel Klingberg;Pär Johansson;Fiona McNab.
Proceedings of the National Academy of Sciences of the United States of America (2009)

370 Citations

Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory

X.-J. Wang;Jesper Tegnér;Jesper Tegnér;C. Constantinidis;C. Constantinidis;P.S. Goldman-Rakic.
Proceedings of the National Academy of Sciences of the United States of America (2004)

366 Citations

Intrinsic function of a neuronal network - a vertebrate central pattern generator.

Sten Grillner;Örjan Ekeberg;Abdeljabbar El Manira;Anders Lansner.
Brain Research Reviews (1998)

293 Citations

Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR.

Francesco Marabita;Paola de Candia;Anna Torri;Jesper Tegnér.
Briefings in Bioinformatics (2016)

239 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

Trending Scientists

Andreas Fring

Andreas Fring

City, University of London

Hatsuo Ishida

Hatsuo Ishida

Case Western Reserve University

Shiv N. Khanna

Shiv N. Khanna

Virginia Commonwealth University

Charles H. Janson

Charles H. Janson

University of Montana

Puttur D. Prasad

Puttur D. Prasad

Augusta University

Raffaele De Francesco

Raffaele De Francesco

University of Milan

David M. Gordon

David M. Gordon

Australian National University

Quentin Noirhomme

Quentin Noirhomme

University of Liège

Sally Wheelwright

Sally Wheelwright

University of Sussex

James Youniss

James Youniss

Catholic University of America

Christina M. Hultman

Christina M. Hultman

Karolinska Institute

Olivier Devuyst

Olivier Devuyst

University of Zurich

Hiroto Egawa

Hiroto Egawa

Kyoto University

Reynolds Farley

Reynolds Farley

University of Michigan–Ann Arbor

Leo R. Chavez

Leo R. Chavez

University of California, Irvine

Michael Wiescher

Michael Wiescher

University of Notre Dame

Something went wrong. Please try again later.