Discipline name
D-index
D-index (Discipline H-index) only includes papers and citation values for an examined
discipline in contrast to General H-index which accounts for publications across all
disciplines.
Citations
Publications
World Ranking
National Ranking

Mechanical and Aerospace Engineering
D-index
36
Citations
6,448
124
World Ranking
1395
National Ranking
29

- Mechanics
- Thermodynamics
- Fluid dynamics

Y. T. Chew spends much of his time researching Lattice Boltzmann methods, Mechanics, Classical mechanics, HPP model and Statistical physics. Y. T. Chew has researched Lattice Boltzmann methods in several fields, including Work, Mathematical analysis, Boundary value problem, Geometry and Compressibility. His Mechanics research includes elements of Immersed boundary method and Boltzmann equation.

His Classical mechanics research integrates issues from Potential flow around a circular cylinder, Isothermal flow, Open-channel flow, Hele-Shaw flow and Wake. His work deals with themes such as Lattice gas automaton, Least squares and Taylor series, which intersect with HPP model. His work in Statistical physics tackles topics such as Thermal which are related to areas like Natural convection, Thermal energy, Rayleigh scattering and Computer simulation.

- Simplified thermal lattice Boltzmann model for incompressible thermal flows (319 citations)
- A lattice Boltzmann model for multiphase flows with large density ratio (318 citations)
- Fluid flow and heat transfer in wavy microchannels (266 citations)

Y. T. Chew mainly investigates Mechanics, Lattice Boltzmann methods, Mathematical analysis, Reynolds number and Classical mechanics. Many of his studies on Mechanics apply to Optics as well. His Lattice Boltzmann methods research is multidisciplinary, incorporating perspectives in Compressibility, Lattice model, HPP model, Statistical physics and Taylor series.

His work in HPP model covers topics such as Boundary value problem which are related to areas like Distribution function. His Mathematical analysis study incorporates themes from Flow, Incompressible flow, Grid, Lattice and Inviscid flow. His research investigates the connection with Classical mechanics and areas like Potential flow around a circular cylinder which intersect with concerns in Drag.

- Mechanics (54.14%)
- Lattice Boltzmann methods (39.85%)
- Mathematical analysis (22.56%)

- Mechanics (54.14%)
- Lattice Boltzmann methods (39.85%)
- Flow (11.28%)

Mechanics, Lattice Boltzmann methods, Flow, Reynolds number and Statistical physics are his primary areas of study. As part of his studies on Mechanics, Y. T. Chew often connects relevant subjects like Classical mechanics. His biological study spans a wide range of topics, including Wetting, Mathematical analysis, Boltzmann equation and Incompressible flow, Compressibility.

His study looks at the relationship between Flow and fields such as Vortex, as well as how they intersect with chemical problems. His studies in Reynolds number integrate themes in fields like Fluid dynamics, Volumetric flow rate, Instability and Nozzle. His Statistical physics research includes themes of Ohnesorge number, Distribution function, Relaxation, Bubble and Finite volume method.

- Fluid flow and heat transfer in wavy microchannels (266 citations)
- A hybrid method to study flow-induced deformation of three-dimensional capsules (91 citations)
- Enhancement of heat transfer in turbulent channel flow over dimpled surface (53 citations)

- Thermodynamics
- Mechanics
- Fluid dynamics

His primary scientific interests are in Mechanics, Lattice Boltzmann methods, Geometry, Wetting and Statistical physics. Drag, Nusselt number, Heat transfer, Pressure drop and Heat transfer enhancement are the subjects of his Mechanics studies. His Lattice Boltzmann methods research is multidisciplinary, relying on both Body force, Classical mechanics, Relaxation and Boltzmann equation.

His research integrates issues of Fluid–structure interaction, Shear flow, Flow and Rigidity in his study of Geometry. Y. T. Chew combines subjects such as Microfluidics, Nanotechnology and Open-channel flow with his study of Wetting. The various areas that Y. T. Chew examines in his Statistical physics study include Work, Distribution function, Numerical stability and HPP model.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

A lattice Boltzmann model for multiphase flows with large density ratio

H. W. Zheng;C. Shu;Y. T. Chew.

Journal of Computational Physics **(2006)**

542 Citations

Simplified thermal lattice Boltzmann model for incompressible thermal flows

Y. Peng;C. Shu;Y. T. Chew.

Physical Review E **(2003)**

494 Citations

Fluid flow and heat transfer in wavy microchannels

Y. Sui;C.J. Teo;P.S. Lee;Y.T. Chew.

International Journal of Heat and Mass Transfer **(2010)**

482 Citations

Application of lattice Boltzmann method to simulate microchannel flows

C. Y. Lim;C. Shu;X. D. Niu;Y. T. Chew.

Physics of Fluids **(2002)**

477 Citations

A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows

X.D. Niu;C. Shu;Y.T. Chew;Y. Peng.

Physics Letters A **(2006)**

438 Citations

Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.

H. M. Xia;S. Y. M. Wan;C. Shu;Y. T. Chew.

Lab on a Chip **(2005)**

263 Citations

A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder

C. Shu;N. Liu;Y.T. Chew.

Journal of Computational Physics **(2007)**

227 Citations

A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity

Y. Peng;C. Shu;Y. T. Chew.

Journal of Computational Physics **(2004)**

217 Citations

A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme

Y. T. Chew;M. Cheng;S. C. Luo.

Journal of Fluid Mechanics **(1995)**

175 Citations

Characteristics of square cylinder wake transition flows

S. C. Luo;Y. T. Chew;Y. T. Ng.

Physics of Fluids **(2003)**

145 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

National University of Singapore

National University of Singapore

National University of Singapore

National University of Singapore

University of Science and Technology of China

Singapore University of Technology and Design

King Abdullah University of Science and Technology

Nanjing University of Aeronautics and Astronautics

University of British Columbia

University of Science and Technology of China

The University of Texas at Dallas

Indian Institute of Technology Kanpur

Hong Kong University of Science and Technology

Ludwig-Maximilians-Universität München

Tulane University

Woods Hole Oceanographic Institution

Centro Internacional de Agricultura Tropical

University of Strathclyde

Weizmann Institute of Science

Brown University

Hokkaido University

Columbia University

University College Dublin

University of Calgary

University of Oxford

Herzberg Institute of Astrophysics

Something went wrong. Please try again later.