His scientific interests lie mostly in Finite element method, Numerical analysis, Mathematical analysis, Nonlinear system and Buckling. Finite element method is the subject of his research, which falls under Structural engineering. His work carried out in the field of Numerical analysis brings together such families of science as Bifurcation, Padé approximant, Applied mathematics, Predictor–corrector method and Discretization.
Michel Potier-Ferry has included themes like Geometry and Galerkin method in his Mathematical analysis study. His study in Nonlinear system is interdisciplinary in nature, drawing from both Stiffness matrix and Mixed finite element method. His biological study deals with issues like Bifurcation theory, which deal with fields such as Radius of convergence, Polynomial, Bifurcation diagram and Fast algorithm.
Michel Potier-Ferry focuses on Finite element method, Numerical analysis, Buckling, Nonlinear system and Mathematical analysis. The subject of his Finite element method research is within the realm of Structural engineering. His Numerical analysis research is multidisciplinary, incorporating perspectives in Bifurcation, Padé approximant, Applied mathematics, Discretization and Computation.
His work deals with themes such as Residual stress, Beam, Deflection and Bifurcation theory, which intersect with Buckling. His Nonlinear system research incorporates themes from Classical mechanics, Stiffness matrix, Stiffness, Algorithm and Fundamental solution. His work on Boundary value problem as part of his general Mathematical analysis study is frequently connected to Regularized meshless method, thereby bridging the divide between different branches of science.
Michel Potier-Ferry mostly deals with Applied mathematics, Numerical analysis, Nonlinear system, Taylor series and Finite element method. His research in Applied mathematics intersects with topics in Lagrange multiplier and Domain. As a part of the same scientific study, Michel Potier-Ferry usually deals with the Numerical analysis, concentrating on Padé approximant and frequently concerns with Linear vibration.
His Nonlinear system study incorporates themes from Mechanics, Shell and Buckling. His studies deal with areas such as Change of variables, Partial differential equation, Elliptic partial differential equation and Series as well as Taylor series. His Finite element method research is under the purview of Structural engineering.
His primary scientific interests are in Mechanics, Finite element method, Nonlinear system, Numerical analysis and Instability. The various areas that Michel Potier-Ferry examines in his Mechanics study include Discretization, Cylinder, Buckling and Bifurcation. Michel Potier-Ferry applies his multidisciplinary studies on Finite element method and Gibbs free energy in his research.
The Nonlinear system study combines topics in areas such as Algorithm, Linear system, Fundamental solution and Tikhonov regularization. His studies in Numerical analysis integrate themes in fields like Linear differential equation, Flow, Exact solutions in general relativity, Square and Taylor series. His biological study spans a wide range of topics, including Plane stress, Compressibility, Hyperelastic material, Spectral method and Iterative method.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
Asymptotic-numerical methods and pade approximants for non-linear elastic structures
B. Cochelin;N. Damil;M. Potier-Ferry.
International Journal for Numerical Methods in Engineering (1994)
Asymptotic-numerical methods and pade approximants for non-linear elastic structures
B. Cochelin;N. Damil;M. Potier-Ferry.
International Journal for Numerical Methods in Engineering (1994)
Review and assessment of various theories for modeling sandwich composites
Heng Hu;Salim Belouettar;Michel Potier-Ferry;El Mostafa Daya.
Composite Structures (2008)
Review and assessment of various theories for modeling sandwich composites
Heng Hu;Salim Belouettar;Michel Potier-Ferry;El Mostafa Daya.
Composite Structures (2008)
A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures
E.M. Daya;M. Potier-Ferry.
Computers & Structures (2001)
A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures
E.M. Daya;M. Potier-Ferry.
Computers & Structures (2001)
A New method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures
N. Damil;M. Potier-Ferry.
International Journal of Engineering Science (1990)
A New method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures
N. Damil;M. Potier-Ferry.
International Journal of Engineering Science (1990)
Méthode asymptotique numérique
De Bruno Cochelin;Noureddine Damil;Michel Potier-Ferry.
European Journal of Computational Mechanics (2008)
Méthode asymptotique numérique
De Bruno Cochelin;Noureddine Damil;Michel Potier-Ferry.
European Journal of Computational Mechanics (2008)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
Luxembourg Institute of Science and Technology
Centre national de la recherche scientifique, CNRS
Polytechnic University of Turin
University of Luxembourg
Birmingham City University
Transylvania University of Brașov
Central European Institute of Technology
University of Cambridge
Shanghai Jiao Tong University
University of Toronto
Stazione Zoologica Anton Dohrn
Agricultural Research Organization
North Central College
University of California, Los Angeles
University of New South Wales
Indiana University
Sapienza University of Rome
University of California, Los Angeles
University of Minnesota
University College London