D-Index & Metrics Best Publications

D-Index & Metrics

Discipline name D-index D-index (Discipline H-index) only includes papers and citation values for an examined discipline in contrast to General H-index which accounts for publications across all disciplines. Citations Publications World Ranking National Ranking
Electronics and Electrical Engineering D-index 33 Citations 5,350 125 World Ranking 2893 National Ranking 93

Research.com Recognitions

Awards & Achievements

2016 - IEEE Fellow For contributions to the development and application of nonlinear and hybrid control systems

Overview

What is he best known for?

The fields of study he is best known for:

  • Control theory
  • Operating system
  • Artificial intelligence

The scientist’s investigation covers issues in Control theory, Exponential stability, Linear system, Nonlinear system and Control system. His studies link Mathematical optimization with Control theory. His work investigates the relationship between Exponential stability and topics such as Hybrid system that intersect with problems in Observer, Exponential function, Scalar and Robust control.

His studies deal with areas such as Integrator and Upper and lower bounds as well as Linear system. His work deals with themes such as Variety and Software, which intersect with Nonlinear system. His Control system research is multidisciplinary, relying on both Control engineering and Nonlinear control.

His most cited work include:

  • Antiwindup for stable linear systems with input saturation: an LMI-based synthesis (460 citations)
  • Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions (218 citations)
  • Brief paper: Stability properties of reset systems (188 citations)

What are the main themes of his work throughout his whole career to date?

Luca Zaccarian mostly deals with Control theory, Exponential stability, Linear system, Control system and Nonlinear system. Luca Zaccarian has included themes like Control engineering and Mathematical optimization in his Control theory study. The various areas that he examines in his Exponential stability study include Closed loop, Observer, Hybrid system, Applied mathematics and Robustness.

He works mostly in the field of Linear system, limiting it down to concerns involving Upper and lower bounds and, occasionally, Optimization problem. His Control system study combines topics in areas such as Actuator and Frascati Tokamak Upgrade. Luca Zaccarian has researched Nonlinear system in several fields, including Stability, Exponential growth, Bounded function and Optimal control.

He most often published in these fields:

  • Control theory (79.63%)
  • Exponential stability (35.19%)
  • Linear system (27.31%)

What were the highlights of his more recent work (between 2012-2020)?

  • Control theory (79.63%)
  • Exponential stability (35.19%)
  • Hybrid system (14.81%)

In recent papers he was focusing on the following fields of study:

Luca Zaccarian spends much of his time researching Control theory, Exponential stability, Hybrid system, Lyapunov function and Linear system. His Control theory research incorporates elements of Tracking and Applied mathematics. The Exponential stability study combines topics in areas such as Observer, Control theory, Event triggered and Robustness.

His studies in Hybrid system integrate themes in fields like Dynamical systems theory and Closed set. The study incorporates disciplines such as Lyapunov exponent, Mathematical optimization and Stability theory in addition to Lyapunov function. His Linear system research includes elements of Telecommunications network, Control and Loop fusion.

Between 2012 and 2020, his most popular works were:

  • Event-triggered transmission for linear control over communication channels (76 citations)
  • Event-triggered transmission for linear control over communication channels (76 citations)
  • Lyapunov-Based Sufficient Conditions for Exponential Stability in Hybrid Systems (64 citations)

In his most recent research, the most cited papers focused on:

  • Control theory
  • Operating system
  • Geometry

His main research concerns Control theory, Exponential stability, Lyapunov function, Hybrid system and Applied mathematics. He interconnects Differential inclusion and Point particle in the investigation of issues within Control theory. His biological study spans a wide range of topics, including Lyapunov equation, Lyapunov redesign, Stability theory, Function and PID controller.

His study in Lyapunov function is interdisciplinary in nature, drawing from both Event triggered, Closed loop, Linear system, Linear state feedback and Saturation nonlinearity. Within one scientific family, Luca Zaccarian focuses on topics pertaining to Observer under Hybrid system, and may sometimes address concerns connected to Control theory, Interconnection, Dynamical billiards and Stability. His research integrates issues of Flow and Dynamical systems theory in his study of Applied mathematics.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

Best Publications

Antiwindup for stable linear systems with input saturation: an LMI-based synthesis

G. Grimm;J. Hatfield;I. Postlethwaite;A.R. Teel.
IEEE Transactions on Automatic Control (2003)

562 Citations

Brief paper: Stability properties of reset systems

Dragan Nešić;Luca Zaccarian;Andrew R. Teel.
Automatica (2008)

284 Citations

Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions

Tingshu Hu;A.R. Teel;L. Zaccarian.
IEEE Transactions on Automatic Control (2006)

273 Citations

Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation

Luca Zaccarian;Andrew R. Teel.
(2011)

269 Citations

A Tutorial on Modern Anti-Windup Design

Sergio Galeani;Sophie Tarbouriech;Matthew Turner;Luca Zaccarian.
European Journal of Control (2009)

253 Citations

A common framework for anti-windup, bumpless transfer and reliable designs

Luca Zaccarian;Andrew R. Teel.
Automatica (2002)

246 Citations

Brief paper: Dynamic allocation for input redundant control systems

Luca Zaccarian.
Automatica (2009)

211 Citations

Brief paper: Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance

Tingshu Hu;Andrew R. Teel;Luca Zaccarian.
Automatica (2008)

202 Citations

First order reset elements and the Clegg integrator revisited

L. Zaccarian;D. Nesic;A.R. Teel.
american control conference (2005)

141 Citations

Nonlinear antiwindup applied to Euler-Lagrange systems

Federico Morabito;Andrew R. Teel;Luca Zaccarian.
IEEE Transactions on Robotics and Automation (2004)

137 Citations

Best Scientists Citing Luca Zaccarian

Sophie Tarbouriech

Sophie Tarbouriech

Federal University of Toulouse Midi-Pyrénées

Publications: 98

Christophe Prieur

Christophe Prieur

Grenoble Alpes University

Publications: 48

Ian Postlethwaite

Ian Postlethwaite

Newcastle University

Publications: 44

Andrew R. Teel

Andrew R. Teel

University of California, Santa Barbara

Publications: 42

Dragan Nesic

Dragan Nesic

University of Melbourne

Publications: 41

Zongli Lin

Zongli Lin

University of Virginia

Publications: 40

Miroslav Krstic

Miroslav Krstic

University of California, San Diego

Publications: 37

Maurice Heemels

Maurice Heemels

Eindhoven University of Technology

Publications: 32

Ricardo G. Sanfelice

Ricardo G. Sanfelice

University of California, Santa Cruz

Publications: 30

Fen Wu

Fen Wu

North Carolina State University

Publications: 24

Henk Nijmeijer

Henk Nijmeijer

Eindhoven University of Technology

Publications: 22

Faryar Jabbari

Faryar Jabbari

University of California, Irvine

Publications: 19

Nikolay V. Kuznetsov

Nikolay V. Kuznetsov

St Petersburg University

Publications: 18

Jamal Daafouz

Jamal Daafouz

University of Lorraine

Publications: 17

Tingshu Hu

Tingshu Hu

University of Massachusetts Lowell

Publications: 16

Bin Zhou

Bin Zhou

Harbin Institute of Technology

Publications: 16

Profile was last updated on December 6th, 2021.
Research.com Ranking is based on data retrieved from the Microsoft Academic Graph (MAG).
The ranking d-index is inferred from publications deemed to belong to the considered discipline.

If you think any of the details on this page are incorrect, let us know.

Contact us
Something went wrong. Please try again later.