Wavelet and Wavelet transform are two areas of study in which Andreas E. Kyprianou engages in interdisciplinary research. In his papers, he integrates diverse fields, such as Wavelet transform and Wavelet packet decomposition. Andreas E. Kyprianou conducted interdisciplinary study in his works that combined Wavelet packet decomposition and Wavelet. As part of his studies on Partial discharge, Andreas E. Kyprianou often connects relevant subjects like Voltage. His study on Voltage is mostly dedicated to connecting different topics, such as Partial discharge. Electrical engineering and Amplifier are frequently intertwined in his study. His study brings together the fields of Computer network and Amplifier. In his articles, Andreas E. Kyprianou combines various disciplines, including Computer network and Telecommunications. He performs multidisciplinary studies into Telecommunications and Electronic engineering in his work.
In his research, Multiplicative function, Uniqueness and Boundary (topology) is intimately related to Mathematical analysis, which falls under the overarching field of Differential equation. His research links Mathematical analysis with Boundary (topology). His Image (mathematics) study is focused on Similarity (geometry) and Noise (video). His research is interdisciplinary, bridging the disciplines of Image (mathematics) and Noise (video). His Nanotechnology study frequently involves adjacent topics like Characterization (materials science) and Layer (electronics). His Characterization (materials science) study frequently draws parallels with other fields, such as Optics. In his articles, he combines various disciplines, including Optics and Interferometry. His research links Nanotechnology with Layer (electronics). He integrates Artificial intelligence with Algorithm in his research.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
Introductory Lectures on Fluctuations of Lévy Processes with Applications
Andreas E. Kyprianou.
(2008)
Fluctuations of Lévy Processes with Applications: Introductory Lectures
Andreas E. Kyprianou.
(2014)
The Theory of Scale Functions for Spectrally Negative Lévy Processes
Alexey Kuznetsov;Andreas E. Kyprianou;Victor Rivero.
arXiv: Probability (2012)
Fluctuations of Lévy Processes with Applications
Andreas E. Kyprianou.
(2014)
Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options
F Avram;A E Kyprianou;Martijn Pistorius.
Annals of Applied Probability (2004)
Some remarks on first passage of Levy processes, the American put and pasting principles
L. Alili;A. E. Kyprianou.
Research Papers in Economics (2005)
Measure change in multitype branching
J. D. Biggins;A. E. Kyprianou.
Advances in Applied Probability (2004)
Ruin probabilities and overshoots for general Lévy insurance risk processes
Claudia Kluppelberg;Andreas E. Kyprianou;Ross A. Maller.
Annals of Applied Probability (2004)
Smoothness of scale functions for spectrally negative Lévy processes
Terence Chan;Andreas Kyprianou;Mladen Savov.
Probability Theory and Related Fields (2011)
SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK
J D Biggins;Andreas E Kyprianou.
Annals of Probability (1997)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
Wellcome Sanger Institute
University of Sheffield
University of Maryland, College Park
Technical University of Munich
University of Illinois at Urbana-Champaign
Sorbonne University
Bielefeld University
University of Vienna
University of Clermont Auvergne
Northumbria University
University of Melbourne
Brookhaven National Laboratory
University of Kansas
German Cancer Research Center
Yale University
Max Planck Society
Ghent University
RWTH Aachen University
University of New Mexico
Spanish National Research Council
University of Kentucky
University of California, Riverside
Stanford University
SUNY Downstate Medical Center
McGill University