2023 - Research.com Mathematics in Switzerland Leader Award
2022 - Research.com Mathematics in Switzerland Leader Award
2020 - Member of Academia Europaea
1999 - Fellow of Alfred P. Sloan Foundation
Rahul Pandharipande mainly investigates Pure mathematics, Algebra, Moduli space, Algebraic geometry and Donaldson–Thomas theory. Pure mathematics and Mathematical analysis are commonly linked in his work. In the subject of general Algebra, his work in Invertible matrix and Equivariant map is often linked to Bilinear interpolation, thereby combining diverse domains of study.
In his study, which falls under the umbrella issue of Moduli space, Obstruction theory, Grassmannian, Sheaf and Compactification is strongly linked to Projective space. His Algebraic geometry research incorporates themes from Discrete mathematics, Algebraic cobordism, Algebraic cycle and Function field of an algebraic variety. His work deals with themes such as Modular form, Fibered knot, Modulo, Cobordism and Dimension of an algebraic variety, which intersect with Donaldson–Thomas theory.
Rahul Pandharipande focuses on Pure mathematics, Moduli space, Genus, Invertible matrix and Algebra. Pure mathematics connects with themes related to Mathematical analysis in his study. His Moduli space study combines topics in areas such as Ring, Chern class, Space and Fundamental class.
His Genus study incorporates themes from Elliptic curve, Divisor, Boundary and Degree. His studies in Invertible matrix integrate themes in fields like Algebraic number, Series, Partition function and Combinatorics. His work is dedicated to discovering how Equivariant map, Hilbert scheme are connected with Quantum cohomology, Surface and Donaldson–Thomas theory and other disciplines.
His scientific interests lie mostly in Pure mathematics, Moduli space, Genus, Invertible matrix and Descendent. His Pure mathematics research focuses on Holomorphic function, Quotient, Conjecture, K3 surface and Hilbert scheme. His research investigates the connection with K3 surface and areas like Algebra which intersect with concerns in Connection.
His studies deal with areas such as Mathematical analysis, Meromorphic function, Ring, Fundamental class and Abelian group as well as Moduli space. While the research belongs to areas of Genus, Rahul Pandharipande spends his time largely on the problem of Cover, intersecting his research to questions surrounding Fibered knot and Fixed point. Rahul Pandharipande has included themes like Calculus, Algebraic geometry, Combinatorics and Euler's formula in his Invertible matrix study.
His primary areas of investigation include Pure mathematics, Moduli space, Conjecture, Algebra and Fundamental class. His study looks at the relationship between Pure mathematics and topics such as Mathematical analysis, which overlap with Invariant. His biological study spans a wide range of topics, including Ring, Type, Abelian group and Euler characteristic.
Within one scientific family, Rahul Pandharipande focuses on topics pertaining to Genus under Ring, and may sometimes address concerns connected to Space. His Conjecture research is multidisciplinary, incorporating perspectives in Hilbert scheme, Modular form and K3 surface. The study incorporates disciplines such as Chern class and Meromorphic function in addition to Fundamental class.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
Mirror Symmetry
Eric Zaslow;Ravi Vakil;Kentaro Hori;Richard Thomas.
(2003)
Notes on stable maps and quantum cohomology
W. Fulton;R. Pandharipande.
arXiv: Algebraic Geometry (1996)
Localization of virtual classes
T. Graber;R. Pandharipande.
Inventiones Mathematicae (1999)
Gromov-Witten theory and Donaldson-Thomas theory, I
D. Maulik;N. Nekrasov;A. Okounkov;R. Pandharipande.
Compositio Mathematica (2006)
Hodge integrals and Gromov-Witten theory
Carel Faber;R. Pandharipande.
Inventiones Mathematicae (2000)
Curve counting via stable pairs in the derived category
Rahul Pandharipande;Robert Paul Thomas.
Inventiones Mathematicae (2009)
Gromov-Witten theory, Hurwitz theory, and completed cycles
Andrei Okounkov;Rahul Pandharipande.
Annals of Mathematics (2006)
Gromov-Witten theory, Hurwitz numbers, and Matrix models, I
Andrei Okounkov;Rahul Pandharipande.
arXiv: Algebraic Geometry (2001)
The Equivariant Gromov-Witten theory of P**1
Andrei Okounkov;Rahul Pandharipande.
Annals of Mathematics (2006)
Gromov-Witten theory and Donaldson-Thomas theory, II
D. Maulik;N. Nekrasov;A. Okounkov;R. Pandharipande.
arXiv: Algebraic Geometry (2003)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
Columbia University
Imperial College London
Northwestern University
University of Bonn
University of Cambridge
University of Illinois at Urbana-Champaign
Harvard University
Harvard University
Harvard University
Virginia Tech
City University of Hong Kong
IBM (United States)
Carnegie Mellon University
University of California, Davis
National University of La Plata
Autonomous University of Barcelona
University of Oxford
INRAE : Institut national de recherche pour l'agriculture, l'alimentation et l'environnement
University of Paris-Saclay
University of Tübingen
Tel Aviv University
University of Iowa Hospitals and Clinics
Cancer Prevention Institute of California
University of Kansas
Cornell University