- Home
- Best Scientists - Mathematics
- Pavel Winternitz

Mathematics

Canada

2023

Discipline name
D-index
D-index (Discipline H-index) only includes papers and citation values for an examined
discipline in contrast to General H-index which accounts for publications across all
disciplines.
Citations
Publications
World Ranking
National Ranking

Mathematics
D-index
75
Citations
16,978
439
World Ranking
132
National Ranking
6

2023 - Research.com Mathematics in Canada Leader Award

2022 - Research.com Mathematics in Canada Leader Award

2002 - CAP-CRM Prize in Theoretical and Mathematical Physics, Canadian Association of Physicists and Centre de Recherches Mathématiques

- Quantum mechanics
- Mathematical analysis
- Algebra

His main research concerns Mathematical analysis, Mathematical physics, Pure mathematics, Partial differential equation and Integrable system. The various areas that he examines in his Mathematical analysis study include Lie group, Nonlinear system and Symmetry group. His Mathematical physics research is multidisciplinary, relying on both Quadratic equation, Separation of variables, Homogeneous space, Quantum and Coupling constant.

His Partial differential equation study deals with Euler equations intersecting with Boundary value problem and Inviscid flow. His Integrable system research includes themes of Bounded function, Classical mechanics and Conjecture. His study in Ordinary differential equation is interdisciplinary in nature, drawing from both Stochastic partial differential equation and Riccati equation.

- Invariants of real low dimension Lie algebras (414 citations)
- ON HIGHER SYMMETRIES IN QUANTUM MECHANICS (369 citations)
- Non-classical symmetry reduction: example of the Boussinesq equation (317 citations)

His scientific interests lie mostly in Mathematical physics, Pure mathematics, Mathematical analysis, Homogeneous space and Lie group. His specific area of interest is Mathematical physics, where he studies Integrable system. His works in Lie conformal algebra, Lie algebra, Affine Lie algebra, Representation of a Lie group and Invariant are all subjects of inquiry into Pure mathematics.

The study incorporates disciplines such as Universal enveloping algebra and Graded Lie algebra in addition to Lie conformal algebra. In his research on the topic of Mathematical analysis, Differential algebraic equation is strongly related with Nonlinear system. In his work, Symmetry is strongly intertwined with Symmetry group, which is a subfield of Lie group.

- Mathematical physics (36.85%)
- Pure mathematics (32.27%)
- Mathematical analysis (31.67%)

- Pure mathematics (32.27%)
- Mathematical physics (36.85%)
- Quantum (10.76%)

His primary scientific interests are in Pure mathematics, Mathematical physics, Quantum, Mathematical analysis and Invariant. His Pure mathematics research includes elements of Symmetry, Separable space and Homogeneous space. Pavel Winternitz has included themes like Linear differential equation, Euclidean space, Fourth order, Polar coordinate system and Hamiltonian in his Mathematical physics study.

Pavel Winternitz combines subjects such as Motion and Scalar with his study of Quantum. His study in Simultaneous equations and Independent equation is done as part of Mathematical analysis. Pavel Winternitz interconnects Discretization, Lie group, Ordinary differential equation and Direct sum in the investigation of issues within Invariant.

- Classical and quantum superintegrability with applications (225 citations)
- Classification and Identification of Lie Algebras (41 citations)
- Classification and Identification of Lie Algebras (41 citations)

- Quantum mechanics
- Mathematical analysis
- Algebra

His primary areas of investigation include Mathematical physics, Quantum, Pure mathematics, Euclidean space and Hamiltonian. Pavel Winternitz has researched Mathematical physics in several fields, including Coupling constant, Scalar and Orthogonal polynomials. His Pure mathematics research incorporates themes from Lie point symmetry, Homogeneous space and Discretization.

His Homogeneous space study incorporates themes from Symmetry, Dynamical systems theory, Theoretical physics and Mathematical analysis. He is studying Ordinary differential equation, which is a component of Mathematical analysis. His Hamiltonian research focuses on Integrable system and how it relates to Quantum system and Magnetic field.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

Invariants of real low dimension Lie algebras

J. Patera;R. T. Sharp;P. Winternitz;H. Zassenhaus.

Journal of Mathematical Physics **(1976)**

670 Citations

Invariants of real low dimension Lie algebras

J. Patera;R. T. Sharp;P. Winternitz;H. Zassenhaus.

Journal of Mathematical Physics **(1976)**

670 Citations

ON HIGHER SYMMETRIES IN QUANTUM MECHANICS

J. Friš;V. Mandrosov;Ya.A. Smorodinsky;M. Uhlíř.

Physics Letters **(1965)**

602 Citations

ON HIGHER SYMMETRIES IN QUANTUM MECHANICS

J. Friš;V. Mandrosov;Ya.A. Smorodinsky;M. Uhlíř.

Physics Letters **(1965)**

602 Citations

Subalgebras of real three‐ and four‐dimensional Lie algebras

J. Patera;P. Winternitz.

Journal of Mathematical Physics **(1977)**

453 Citations

Subalgebras of real three‐ and four‐dimensional Lie algebras

J. Patera;P. Winternitz.

Journal of Mathematical Physics **(1977)**

453 Citations

Non-classical symmetry reduction: example of the Boussinesq equation

Decio Levi;P. Winternitz.

Journal of Physics A **(1989)**

427 Citations

Non-classical symmetry reduction: example of the Boussinesq equation

Decio Levi;P. Winternitz.

Journal of Physics A **(1989)**

427 Citations

Superintegrability with third-order integrals in quantum and classical mechanics

Simon Gravel;Pavel Winternitz.

Journal of Mathematical Physics **(2002)**

335 Citations

Superintegrability with third-order integrals in quantum and classical mechanics

Simon Gravel;Pavel Winternitz.

Journal of Mathematical Physics **(2002)**

335 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

Roma Tre University

University of Montreal

University of Montreal

University of Minnesota

University of Waikato

University of Minnesota

National Autonomous University of Mexico

University of Paris-Saclay

Université Paris Cité

University of New Mexico

Radboud University Nijmegen

University of British Columbia

Southeast University

Fraunhofer Society

University of Liverpool

Polytechnic University of Turin

National Institute for Materials Science

University of Florida

Washington University in St. Louis

University of Florida

United States Food and Drug Administration

Eastern Virginia Medical School

Scripps Research Institute

The Ohio State University

The Open University

University of Wisconsin–Madison

Something went wrong. Please try again later.