2018 - Member of Academia Europaea
His main research concerns Combinatorics, Discrete mathematics, Upper and lower bounds, Graph and Algorithm. Gábor Tardos performs multidisciplinary study on Combinatorics and Formal power series in his works. As part of his studies on Discrete mathematics, he often connects relevant subjects like Block matrix.
His study explores the link between Graph and topics such as Absolute constant that cross with problems in Multiplicative constant, Vertex partition, Degree and Bounded function. His work on Standard model as part of general Algorithm study is frequently linked to High rate, Weak model and Fountain code, therefore connecting diverse disciplines of science. His study in the field of Luby transform code is also linked to topics like Fingerprint and Traitor tracing.
The scientist’s investigation covers issues in Combinatorics, Discrete mathematics, Upper and lower bounds, Conjecture and Graph. His Combinatorics study integrates concerns from other disciplines, such as Point, Plane and Bounded function. His Discrete mathematics research includes themes of Degree and Constant.
The study incorporates disciplines such as Algorithm and Communication complexity in addition to Upper and lower bounds. His Conjecture study combines topics from a wide range of disciplines, such as Intersection, Sequence and Regular polygon. His biological study spans a wide range of topics, including Chromatic scale and Topology.
Combinatorics, Conjecture, Plane, Upper and lower bounds and Vertex are his primary areas of study. Borrowing concepts from Omega, he weaves in ideas under Combinatorics. His study looks at the relationship between Conjecture and topics such as Intersection, which overlap with Lemma, Clique, Transversal, Approximation algorithm and Time complexity.
He has researched Plane in several fields, including Point, Pairwise comparison, Perimeter and Constant. Gábor Tardos combines subjects such as Multigraph and Ordered graph with his study of Upper and lower bounds. Gábor Tardos focuses mostly in the field of Vertex, narrowing it down to topics relating to Disjoint sets and, in certain cases, Clique number and Arbitrarily large.
His scientific interests lie mostly in Combinatorics, Plane, Conjecture, Discrete mathematics and Perimeter. Gábor Tardos studies Vertex, a branch of Combinatorics. His studies deal with areas such as Quadratic equation, Approximation algorithm, Regular polygon, Transversal and Clique as well as Conjecture.
His Discrete mathematics study frequently draws connections to other fields, such as Duality. The concepts of his Perimeter study are interwoven with issues in Convex polygon and Pairwise comparison. The Upper and lower bounds study which covers Ordered graph that intersects with Bound graph.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
On the power of randomization in on-line algorithms
S. Ben-David;A. Borodin;R. Karp;G. Tardos.
Algorithmica (1994)
Optimal probabilistic fingerprint codes
Gábor Tardos.
Journal of the ACM (2008)
A constructive proof of the general lovász local lemma
Robin A. Moser;Gábor Tardos.
Journal of the ACM (2010)
Excluded permutation matrices and the Stanley-Wilf conjecture
Adam Marcus;Gábor Tardos.
Journal of Combinatorial Theory, Series A (2004)
Optimal probabilistic fingerprint codes
Gábor Tardos.
symposium on the theory of computing (2003)
On the power of randomization in online algorithms
S. Ben-David;A. Borodin;R. Karp;G. Tardos.
symposium on the theory of computing (1990)
Tight bounds for Lp samplers, finding duplicates in streams, and related problems
Hossein Jowhari;Mert Sağlam;Gábor Tardos.
symposium on principles of database systems (2011)
Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs
Janos Pach;Rados Radoicic;Gabor Tardos;Geza Toth.
Discrete and Computational Geometry (2006)
On the maximum number of edges in quasi-planar graphs
Eyal Ackerman;Gábor Tardos.
Journal of Combinatorial Theory, Series A (2007)
Polynomial bound for a chip firing game on graphs
Gábor Tardos.
SIAM Journal on Discrete Mathematics (1988)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
Alfréd Rényi Institute of Mathematics
Courant Institute of Mathematical Sciences
École Polytechnique
Tel Aviv University
Tel Aviv University
Technion – Israel Institute of Technology
University of Waterloo
Charles University
Princeton University
University of California, Berkeley
Columbia University
The University of Texas at Austin
University of Illinois at Urbana-Champaign
National Institutes of Health
Heinrich Heine University Düsseldorf
Monash University
New Mexico Museum of Natural History and Science
Agriculture and Agriculture-Food Canada
Université Catholique de Louvain
Deakin University
The University of Texas Health Science Center at San Antonio
Rutgers, The State University of New Jersey
Cornell University
University of Melbourne
University of Pavia
University of Helsinki