2023 - Research.com Mathematics in Slovenia Leader Award
2004 - Member of the European Academy of Sciences
Member of the European Academy of Sciences and Arts
The scientist’s investigation covers issues in Mathematical analysis, Operator, Pure mathematics, Combinatorics and Eigenvalues and eigenvectors. His study in the field of Differential operator, Bounded function and Partial differential equation also crosses realms of Parametric statistics and Standing wave. His studies deal with areas such as Variable, Nehari manifold, Compact space and Euler equations as well as Operator.
In his research on the topic of Pure mathematics, Metric space and General topology is strongly related with Algebra. The Combinatorics study combines topics in areas such as Intersection, Manifold, Product and Euclidean geometry. His Eigenvalues and eigenvectors research includes elements of Discontinuity, Spectrum and Laplace operator.
His primary areas of study are Pure mathematics, Combinatorics, Mathematical analysis, Discrete mathematics and Manifold. His Pure mathematics study combines topics in areas such as Zero, Space and Algebra. His work carried out in the field of Combinatorics brings together such families of science as Embedding, Codimension and Invariant.
Many of his studies involve connections with topics such as Eigenvalues and eigenvectors and Mathematical analysis. His study on Banach space is mostly dedicated to connecting different topics, such as Selection. Laplace operator combines with fields such as Perturbation and Lambda in his investigation.
His primary scientific interests are in Pure mathematics, Mathematical analysis, Laplace operator, Eigenvalues and eigenvectors and Zero. Dušan Repovš combines subjects such as Discrete mathematics, Simple and Omega with his study of Pure mathematics. His Operator, Differential operator and Bounded function study in the realm of Mathematical analysis connects with subjects such as Parametric statistics and Term.
His Laplace operator research includes themes of Sublinear function, Combinatorics, Dirichlet distribution and Multiplicity. As part of one scientific family, he deals mainly with the area of Eigenvalues and eigenvectors, narrowing it down to issues related to the Applied mathematics, and often Optimal control and Function. As a part of the same scientific study, Dušan Repovš usually deals with the Zero, concentrating on Sign and frequently concerns with Weight function.
His main research concerns Mathematical analysis, Pure mathematics, Laplace operator, Eigenvalues and eigenvectors and Applied mathematics. Dušan Repovš incorporates Mathematical analysis and Term in his studies. His Pure mathematics research is multidisciplinary, incorporating perspectives in Dirichlet problem, Class and Fractal, Sierpinski triangle.
His studies in Laplace operator integrate themes in fields like Multiplicity and Sublinear function, Combinatorics. His research in Eigenvalues and eigenvectors intersects with topics in Robin boundary condition and p-Laplacian. The concepts of his Applied mathematics study are interwoven with issues in Nonlinear evolution and Distributed parameter system.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis
Vicentiu D. Radulescu;Dusan D. Repovs.
(2015)
Nonlinear Analysis - Theory and Methods
Nikolaos S. Papageorgiou;Vicenţiu D. Rădulescu;Dušan D. Repovš.
(2019)
Continuous Selections of Multivalued Mappings
Dušan Repovš;Pavel Vladimirovič Semenov.
(1998)
Combined effects in nonlinear problems arising in the study ofanisotropic continuous media
Dušan Repovš;Vicentiu Radulescu.
Nonlinear Analysis-theory Methods & Applications (2012)
Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves
Anouar Bahrouni;Vicenţiu D Rădulescu;Vicenţiu D Rădulescu;Dušan D Repovš.
Nonlinearity (2019)
Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential
Nikolaos S. Papageorgiou;Vicenţiu D. Rădulescu;Dušan D. Repovš.
Discrete and Continuous Dynamical Systems (2017)
Double phase problems with variable growth
Matija Cencelj;Vicenţiu D. Rădulescu;Vicenţiu D. Rădulescu;Dušan D. Repovš.
Nonlinear Analysis-theory Methods & Applications (2018)
Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials
Xia Zhang;Binlin Zhang;Dušan Repovš.
Nonlinear Analysis-theory Methods & Applications (2016)
Stationary waves of Schrödinger-type equations with variable exponent
Dušan D. Repovš.
Analysis and Applications (2015)
Stationary waves of Schr"{o}dinger-type equations with variable exponent
Dušan D. Repovš.
arXiv: Analysis of PDEs (2016)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
AGH University of Science and Technology
National Technical University of Athens
University of Palermo
Jordan University of Science and Technology
Budapest University of Technology and Economics
Hong Kong Polytechnic University
European Synchrotron Radiation Facility
Central South University
Nanyang Technological University
Princeton University
Carnegie Mellon University
University of Minnesota
University of Padua
New York University Abu Dhabi
The University of Texas MD Anderson Cancer Center
National Institutes of Health
University of Bergen
Uppsala University
Drexel University