- Home
- Best Scientists - Mathematics
- Christian Bonatti

Discipline name
D-index
D-index (Discipline H-index) only includes papers and citation values for an examined
discipline in contrast to General H-index which accounts for publications across all
disciplines.
Citations
Publications
World Ranking
National Ranking

Mathematics
D-index
32
Citations
5,757
142
World Ranking
2350
National Ranking
144

- Pure mathematics
- Mathematical analysis
- Topology

Pure mathematics, Discrete mathematics, Diffeomorphism, Mathematical analysis and Transitive relation are his primary areas of study. His work often combines Pure mathematics and Dynamics studies. His Diffeomorphism research is multidisciplinary, incorporating elements of Manifold and Class.

In the subject of general Mathematical analysis, his work in Periodic orbits and Lebesgue measure is often linked to Hyperbolic systems, thereby combining diverse domains of study. His work carried out in the field of Lebesgue measure brings together such families of science as Gravitational singularity, Tangent bundle, Bounded function and Subbundle. The various areas that he examines in his Transitive relation study include Anosov diffeomorphism, Flow and Structural stability.

- SRB measures for partially hyperbolic systems whose central direction is mostly expanding (343 citations)
- Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective (312 citations)
- A C^1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources (228 citations)

Christian Bonatti focuses on Pure mathematics, Diffeomorphism, Mathematical analysis, Discrete mathematics and Ergodic theory. His Pure mathematics study combines topics in areas such as Flow, Attractor and Transitive relation. The concepts of his Diffeomorphism study are interwoven with issues in Centralizer and normalizer, Dimension, Dense set, Class and Space.

His work on Lebesgue measure, Closure and Holonomy as part of his general Mathematical analysis study is frequently connected to Saddle and Perturbation, thereby bridging the divide between different branches of science. His Ergodic theory research is multidisciplinary, relying on both Zero, Measure, Invariant measure, Probability measure and Geodesic. As part of one scientific family, Christian Bonatti deals mainly with the area of Invariant, narrowing it down to issues related to the Vector field, and often Gravitational singularity.

- Pure mathematics (67.03%)
- Diffeomorphism (29.12%)
- Mathematical analysis (21.98%)

- Pure mathematics (67.03%)
- Ergodic theory (16.48%)
- Invariant (14.84%)

Christian Bonatti spends much of his time researching Pure mathematics, Ergodic theory, Invariant, Transitive relation and Zero. He works in the field of Pure mathematics, focusing on Diffeomorphism in particular. His Diffeomorphism research is multidisciplinary, incorporating perspectives in Countable set, Algebra over a field and Dimension.

His research in Ergodic theory intersects with topics in Projectivization, Geodesic, Probability measure and Regular polygon. His Invariant study integrates concerns from other disciplines, such as Vector field, Horocycle, Attractor and Vector bundle. His Transitive relation study incorporates themes from Foliation, Center and Metric.

- Hyperbolicity as an obstruction to smoothability for one-dimensional actions (10 citations)
- Dominated Pesin theory: convex sum of hyperbolic measures (7 citations)
- A criterion for zero averages and full support of ergodic measures (7 citations)

- Mathematical analysis
- Topology
- Pure mathematics

Christian Bonatti mostly deals with Pure mathematics, Ergodic theory, Mathematical analysis, Transitive relation and Invariant. The Pure mathematics study combines topics in areas such as Interval and PSL. Christian Bonatti has researched Ergodic theory in several fields, including Flow, Geodesic and Regular polygon.

His study in the fields of Zero under the domain of Mathematical analysis overlaps with other disciplines such as Characteristic space and Heteroclinic cycle. The study incorporates disciplines such as Metric, Closure, Center, Torus and Foliation in addition to Transitive relation. His Invariant study combines topics from a wide range of disciplines, such as Periodic orbits and Converse.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

SRB measures for partially hyperbolic systems whose central direction is mostly expanding

José F. Alves;Christian Bonatti;Marcelo Viana.

Inventiones Mathematicae **(2000)**

788 Citations

Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective

Christian Bonatti;Lorenzo J. Díaz;Marcelo Viana.

**(2004)**

700 Citations

A C^1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources

Christian Bonatti;Lorenzo Díaz;Enrique R. Pujals.

Annals of Mathematics **(2003)**

358 Citations

Récurrence et généricité

Christian Bonatti;Sylvain Crovisier.

Inventiones Mathematicae **(2004)**

350 Citations

Persistent nonhyperbolic transitive diffeomorphisms

Christian Bonatti;Lorenzo J. Díaz.

Annals of Mathematics **(1996)**

249 Citations

Recurrence and genericity

Christian Bonatti;Sylvain Crovisier.

Comptes Rendus Mathematique **(2003)**

240 Citations

NONUNIFORM HYPERBOLICITY FOR C 1 -GENERIC DIFFEOMORPHISMS

Flavio Abdenur;Christian Bonatti;Sylvain Crovisier.

Israel Journal of Mathematics **(2011)**

163 Citations

Lyapunov exponents with multiplicity 1 for deterministic products of matrices

C. Bonatti;M. Viana.

Ergodic Theory and Dynamical Systems **(2004)**

122 Citations

Généricité d'exposants de Lyapunov non-nuls pour des produits déterministes de matrices

Christian Bonatti;Xavier Gómez-Mont;Marcelo Viana.

Annales De L Institut Henri Poincare-analyse Non Lineaire **(2003)**

122 Citations

Connexions hétéroclines et généricité d'une infinité de puits et de sources

Christian Bonatti;Lorenzo Díaz.

Annales Scientifiques De L Ecole Normale Superieure **(1999)**

116 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

Instituto Nacional de Matemática Pura e Aplicada

University of Copenhagen

Northwestern University

Sorbonne University

University of Oulu

Sejong University

University of Pisa

Paris-Est Créteil University

Technical University of Madrid

Wayne State University

Illinois Institute of Technology

University of Buenos Aires

La Trobe University

National Institutes of Health

Spanish National Research Council

University of Melbourne

Massey University

Cooperative Institute for Research in Environmental Sciences

University of Strathclyde

Duke University

Something went wrong. Please try again later.