- Home
- Best Scientists - Mathematics
- Viorel Barbu

Discipline name
D-index
D-index (Discipline H-index) only includes papers and citation values for an examined
discipline in contrast to General H-index which accounts for publications across all
disciplines.
Citations
Publications
World Ranking
National Ranking

Mathematics
D-index
46
Citations
13,129
324
World Ranking
955
National Ranking
1

Engineering and Technology
D-index
43
Citations
11,441
275
World Ranking
2881
National Ranking
1

2008 - Member of the European Academy of Sciences

- Mathematical analysis
- Quantum mechanics
- Hilbert space

Viorel Barbu mostly deals with Mathematical analysis, Mathematical optimization, Uniqueness, Nonlinear system and Applied mathematics. He regularly links together related areas like Controllability in his Mathematical analysis studies. His work in Mathematical optimization addresses issues such as Convex analysis, which are connected to fields such as Subderivative, Dynamic programming, Variational principle and Differential dynamic programming.

His Uniqueness research includes themes of Monotone polygon, Forcing, Convex function, Bounded function and Wiener process. His study looks at the intersection of Nonlinear system and topics like Banach space with Stochastic partial differential equation, Dissipative operator and Sobolev space. His Optimal control research incorporates elements of Type and Omega.

- Nonlinear semigroups and differential equations in Banach spaces (1622 citations)
- Convexity and optimization in Banach spaces (643 citations)
- Analysis and control of nonlinear infinite dimensional systems (458 citations)

His primary scientific interests are in Mathematical analysis, Nonlinear system, Applied mathematics, Uniqueness and Optimal control. As part of one scientific family, Viorel Barbu deals mainly with the area of Mathematical analysis, narrowing it down to issues related to the Controllability, and often Parabolic partial differential equation. His Nonlinear system research is multidisciplinary, incorporating perspectives in Monotone polygon, Type, Fokker–Planck equation, Stochastic differential equation and Space.

His biological study spans a wide range of topics, including Stochastic partial differential equation and Brownian motion. The concepts of his Uniqueness study are interwoven with issues in Wiener process and Bounded function. Optimal control is often connected to Variational inequality in his work.

- Mathematical analysis (54.71%)
- Nonlinear system (27.66%)
- Applied mathematics (21.28%)

- Nonlinear system (27.66%)
- Mathematical analysis (54.71%)
- Applied mathematics (21.28%)

His primary areas of study are Nonlinear system, Mathematical analysis, Applied mathematics, Stochastic differential equation and Uniqueness. The Nonlinear system study combines topics in areas such as Semigroup, Type, Fokker–Planck equation, Space and Wiener process. His Mathematical analysis study frequently links to other fields, such as Controllability.

His work carried out in the field of Applied mathematics brings together such families of science as Representation, Nonlinear stochastic differential equations, Optimal control and Bellman equation. Viorel Barbu has researched Stochastic differential equation in several fields, including Monotone polygon, Hilbert space, Brownian motion, Stochastic partial differential equation and Weak solution. His Monotone polygon research is multidisciplinary, incorporating elements of Partial differential equation and Pure mathematics.

- Stochastic nonlinear Schrödinger equations (33 citations)
- Stochastic Porous Media Equations (32 citations)
- Probabilistic Representation for Solutions to Nonlinear Fokker--Planck Equations (27 citations)

- Mathematical analysis
- Quantum mechanics
- Hilbert space

Nonlinear system, Mathematical analysis, Uniqueness, Fokker–Planck equation and Wiener process are his primary areas of study. His Nonlinear system research includes elements of Cauchy problem, Applied mathematics and Schrödinger equation. The study of Mathematical analysis is intertwined with the study of Type in a number of ways.

His Uniqueness study combines topics from a wide range of disciplines, such as Stochastic differential equation and Gaussian noise. His Stochastic differential equation study incorporates themes from Stochastic partial differential equation, Monotone polygon and Brownian motion. The study incorporates disciplines such as Term and Mathematical physics in addition to Fokker–Planck equation.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

Nonlinear semigroups and differential equations in Banach spaces

Viorel Barbu.

**(1976)**

3219 Citations

Convexity and optimization in Banach spaces

Viorel Barbu;Theodor Precupanu.

**(1972)**

1022 Citations

Analysis and control of nonlinear infinite dimensional systems

Viorel Barbu.

**(1993)**

816 Citations

Optimal control of variational inequalities

Viorel Barbu.

**(1984)**

778 Citations

Nonlinear Differential Equations of Monotone Types in Banach Spaces

Viorel Barbu.

**(2010)**

776 Citations

Hamilton-Jacobi equations in Hilbert spaces

Viorel Barbu;Giuseppe Da Prato.

**(1983)**

241 Citations

Mathematical Methods in Optimization of Differential Systems

Viorel Barbu.

**(1994)**

239 Citations

Internal stabilization of Navier-Stokes equations with finite-dimensional controllers

Viorel Barbu;Roberto Triggiani.

Indiana University Mathematics Journal **(2004)**

173 Citations

Optimal Control of Population Dynamics

V. Barbu;M. Iannelli.

Journal of Optimization Theory and Applications **(1999)**

169 Citations

Exact Controllability of the Superlinear Heat Equation

V. Barbu.

Applied Mathematics and Optimization **(2000)**

169 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

Bielefeld University

Scuola Normale Superiore di Pisa

University of Memphis

University of Pavia

University of Memphis

University of York

University of Graz

University of Bonn

University of Jyväskylä

Polytechnic University of Milan

University of Maryland, College Park

Claude Bernard University Lyon 1

University of Turku

Washington State University

University of Ferrara

Korea University

Pennsylvania State University

Brown University

Charité - University Medicine Berlin

Indiana University – Purdue University Indianapolis

National Institute of Fitness and Sports in Kanoya

University of Stirling

Maastricht University

Collège de France

Harvard University

University of Hawaii at Manoa

Something went wrong. Please try again later.