- Home
- Top Scientists - Mathematics
- Joel L. Lebowitz

Discipline name
H-index
Citations
Publications
World Ranking
National Ranking

Mathematics
H-index
95
Citations
38,562
417
World Ranking
23
National Ranking
17

2021 - Dannie Heineman Prize for Mathematical Physics, American Physical Society and American Institute of Physics

2013 - Fellow of the American Mathematical Society

2007 - Max Planck Medal, German Physical Society

2000 - Henri Poincaré Prize, International Association of Mathematical Physics

1983 - Fellow of the American Association for the Advancement of Science (AAAS)

1980 - Member of the National Academy of Sciences

1976 - Fellow of John Simon Guggenheim Memorial Foundation

1966 - Fellow of American Physical Society (APS)

- Quantum mechanics
- Mathematical analysis
- Thermodynamics

His primary areas of study are Statistical physics, Mathematical physics, Quantum mechanics, Non-equilibrium thermodynamics and Classical mechanics. His work on Statistical mechanics as part of general Statistical physics study is frequently linked to Particle system, bridging the gap between disciplines. His work in Quantum mechanics addresses issues such as Thermodynamics, which are connected to fields such as Simple.

His studies in Non-equilibrium thermodynamics integrate themes in fields like Stationary state, Entropy production, Phase transition and Energy functional. His Phase transition research incorporates themes from Large deviations theory, Asymmetric simple exclusion process and Deviation function. Joel L. Lebowitz has included themes like Detailed balance, Lattice, Limit and Thermodynamic equilibrium in his Classical mechanics study.

- Phase Transitions and Critical Phenomena (11908 citations)
- A new algorithm for Monte Carlo simulation of Ising spin systems (1709 citations)
- A GALLAVOTTI-COHEN-TYPE SYMMETRY IN THE LARGE DEVIATION FUNCTIONAL FOR STOCHASTIC DYNAMICS (1169 citations)

His scientific interests lie mostly in Statistical physics, Quantum mechanics, Condensed matter physics, Mathematical analysis and Lattice. His Statistical physics research is multidisciplinary, incorporating elements of Time evolution, Non-equilibrium thermodynamics, Scaling and Classical mechanics. His work on Quantum mechanics is being expanded to include thematically relevant topics such as Mathematical physics.

His research integrates issues of Monte Carlo method and Phase diagram in his study of Condensed matter physics. He works in the field of Mathematical analysis, focusing on Boundary value problem in particular. Many of his studies on Lattice involve topics that are commonly interrelated, such as Phase transition.

- Statistical physics (19.72%)
- Quantum mechanics (14.88%)
- Condensed matter physics (14.52%)

- Combinatorics (8.15%)
- Mathematical analysis (13.46%)
- Electron (3.78%)

His primary areas of study are Combinatorics, Mathematical analysis, Electron, Statistical physics and Mathematical physics. His research investigates the link between Combinatorics and topics such as Bounded function that cross with problems in Conjecture. His Mathematical analysis study incorporates themes from Hamiltonian and Nonlinear system.

His biological study spans a wide range of topics, including Thermal, Thermalisation and Boltzmann's entropy formula. His research in Mathematical physics intersects with topics in Inverse, Phase transition, Fugacity and Finite set. His study on Phase transition is covered under Condensed matter physics.

- Thermal Equilibrium of a Macroscopic Quantum System in a Pure State. (47 citations)
- Nonequilibrium stationary state of a harmonic crystal with alternating masses. (39 citations)
- Harmonic Systems with Bulk Noises (34 citations)

- Quantum mechanics
- Mathematical analysis
- Electron

His primary scientific interests are in Combinatorics, Statistical physics, Mathematical analysis, Time evolution and Stationary state. His studies deal with areas such as Discrete mathematics, Probability measure, Radial distribution function, Central limit theorem and Eigenvalues and eigenvectors as well as Combinatorics. His Statistical physics research is multidisciplinary, relying on both Quantum, Thermal equilibrium, Thermal and Thermalisation.

Dirichlet boundary condition is closely connected to Nonlinear system in his research, which is encompassed under the umbrella topic of Mathematical analysis. As part of one scientific family, Joel L. Lebowitz deals mainly with the area of Time evolution, narrowing it down to issues related to the Classical mechanics, and often Measure, Constant, Space and Electromagnetic radiation. His Non-equilibrium thermodynamics and Phase transition study are his primary interests in Quantum mechanics.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

A new algorithm for Monte Carlo simulation of Ising spin systems

A. B. Bortz;M. H. Kalos;Joel Lebowitz.

Journal of Computational Physics **(1975)**

2606 Citations

Statistical Mechanics of Rigid Spheres

H. Reiss;H. L. Frisch;J. L. Lebowitz.

Journal of Chemical Physics **(1959)**

1619 Citations

A GALLAVOTTI-COHEN-TYPE SYMMETRY IN THE LARGE DEVIATION FUNCTIONAL FOR STOCHASTIC DYNAMICS

Joel L. Lebowitz;Herbert Spohn.

Journal of Statistical Physics **(1999)**

1468 Citations

Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres

J.L. Lebowitz.

Physical Review **(1964)**

1234 Citations

TIME SYMMETRY IN THE QUANTUM PROCESS OF MEASUREMENT

Yakir Aharonov;Peter G. Bergmann;Joel L. Lebowitz.

Physical Review **(1964)**

954 Citations

The equilibrium theory of classical fluids

Harry L. Frisch;Joel L. Lebowitz;Stuart A. Rice.

**(1964)**

878 Citations

Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition

J. L. Lebowitz;O. Penrose.

Journal of Mathematical Physics **(1966)**

655 Citations

Scaled Particle Theory of Fluid Mixtures

J. L. Lebowitz;E. Helfand;E. Praestgaard.

Journal of Chemical Physics **(1965)**

652 Citations

Canonical Typicality

Sheldon Goldstein;Joel L. Lebowitz;Roderich Tumulka;Nino Zanghi.

Physical Review Letters **(2005)**

651 Citations

Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors

Sheldon Katz;Joel L. Lebowitz;Herbert Spohn.

Journal of Statistical Physics **(1984)**

628 Citations

Profile was last updated on December 6th, 2021.

Research.com Ranking is based on data retrieved from the Microsoft Academic Graph (MAG).

The ranking h-index is inferred from publications deemed to belong to the considered discipline.

If you think any of the details on this page are incorrect, let us know.

Contact us

Rutgers, The State University of New Jersey

Technical University of Munich

Collège de France

Heriot-Watt University

Princeton University

University of Alabama at Birmingham

Princeton University

Max Planck Society

Brigham Young University

University of Buenos Aires

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

Something went wrong. Please try again later.