Mathematical analysis, Fractional calculus, Applied mathematics, Banach space and Uniqueness are his primary areas of study. His work carried out in the field of Mathematical analysis brings together such families of science as Type, Controllability and Nonlinear system. JinRong Wang has included themes like Cauchy distribution, Fixed point, Compact space and Hadamard transform in his Fractional calculus study.
His Applied mathematics research is multidisciplinary, incorporating elements of Class and Evolution equation. The study incorporates disciplines such as Theory of computation and Picard–Lindelöf theorem in addition to Banach space. His research in Uniqueness focuses on subjects like Differential equation, which are connected to Eigenvalues and eigenvectors, Exponential function, Exponential growth and Exponential stability.
JinRong Wang mostly deals with Mathematical analysis, Applied mathematics, Nonlinear system, Differential equation and Fractional calculus. His study in Uniqueness, Banach space, Fixed-point theorem, Fractional differential and Fixed point is carried out as part of his studies in Mathematical analysis. His studies in Uniqueness integrate themes in fields like Gronwall's inequality and Partial differential equation.
His Applied mathematics study integrates concerns from other disciplines, such as Delay differential equation, Iterative learning control, Type, Boundary value problem and Controllability. His biological study spans a wide range of topics, including Matrix exponential, Representation and Order. His research investigates the connection with Fractional calculus and areas like Hadamard transform which intersect with concerns in Hermite polynomials.
JinRong Wang spends much of his time researching Applied mathematics, Differential equation, Nonlinear system, Mathematical analysis and Uniqueness. JinRong Wang interconnects Controllability and Constant coefficients in the investigation of issues within Applied mathematics. His Differential equation research includes elements of Conformable matrix, Type, Matrix exponential, Fixed-point theorem and Lipschitz continuity.
He is studying Iterative learning control, which is a component of Nonlinear system. JinRong Wang conducted interdisciplinary study in his works that combined Mathematical analysis and Vorticity. JinRong Wang combines subjects such as Fractional differential and Laplace transform with his study of Uniqueness.
JinRong Wang mainly focuses on Nonlinear system, Uniqueness, Differential equation, Fixed-point theorem and Mathematical analysis. In the field of Nonlinear system, his study on Fractional differential overlaps with subjects such as Tacking. His work carried out in the field of Uniqueness brings together such families of science as Stability result and Monodromy matrix.
As part of the same scientific family, JinRong Wang usually focuses on Fixed-point theorem, concentrating on Controllability and intersecting with Applied mathematics, Null, Sobolev space, Semigroup and Differential inclusion. JinRong Wang has researched Applied mathematics in several fields, including Laplace transform and Gramian matrix. His Mathematical analysis research is multidisciplinary, relying on both Boundary and Constant.
This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.
A class of fractional evolution equations and optimal controls
JinRong Wang;Yong Zhou.
Nonlinear Analysis-real World Applications (2011)
On the concept and existence of solution for impulsive fractional differential equations
Michal Fec˘kan;Yong Zhou;JinRong Wang.
Communications in Nonlinear Science and Numerical Simulation (2012)
Ulam stability and data dependence for fractional differential equations with Caputo derivative
JinRong Wang;Linli Lv;Yong Zhou.
Electronic Journal of Qualitative Theory of Differential Equations (2011)
Ulam’s type stability of impulsive ordinary differential equations☆
JinRong Wang;Michal Fec˘kan;Michal Fec˘kan;Yong Zhou.
Journal of Mathematical Analysis and Applications (2012)
On the new concept of solutions and existence results for impulsive fractional evolution equations
Michal Fečkan;Jin-Rong Wang;Yong Zhou;Michal Fe kan.
Dynamics of Partial Differential Equations (2011)
Existence and controllability results for fractional semilinear differential inclusions
JinRong Wang;Yong Zhou.
Nonlinear Analysis-real World Applications (2011)
Nonlinear impulsive problems for fractional differential equations and Ulam stability
Jinrong Wang;Yong Zhou;Michal Feckan.
Computers & Mathematics With Applications (2012)
Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity
JinRong Wang;Xuezhu Li;Michal Fe kan;Yong Zhou.
Applicable Analysis (2013)
A survey on impulsive fractional differential equations
JinRong Wang;Michal Fečkan;Yong Zhou.
Fractional Calculus and Applied Analysis (2016)
New concepts and results in stability of fractional differential equations
JinRong Wang;LinLi Lv;Yong Zhou.
Communications in Nonlinear Science and Numerical Simulation (2012)
If you think any of the details on this page are incorrect, let us know.
We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:
Comenius University
Nanjing University
National University of Ireland, Galway
The University of Texas at Austin
City University of Hong Kong
Aalto University
Taiwan Semiconductor Manufacturing Company (Taiwan)
Hong Kong Polytechnic University
Eindhoven University of Technology
University of Padua
Northeast Normal University
University of Helsinki
University of California, Merced
Clemson University
Houston Methodist
Duke University
Royal College of Surgeons in Ireland
University of Mannheim
University of Cincinnati