- Home
- Joel E. Moore

Lawrence Berkeley National Laboratory

United States

- Quantum mechanics
- Electron
- Condensed matter physics

His primary areas of study are Quantum mechanics, Condensed matter physics, Topological insulator, Quantum entanglement and Scattering. The study incorporates disciplines such as Quantum electrodynamics and Gapless playback in addition to Quantum mechanics. His Condensed matter physics research is multidisciplinary, relying on both Spinplasmonics, Spin polarization and Thermoelectric materials.

His Topological insulator research is multidisciplinary, incorporating elements of Geometric phase, Surface states, Topological order and Quantum Hall effect. His work in Quantum Hall effect tackles topics such as Charge transfer insulators which are related to areas like Quantum computer, Development, Topology and Proximity effect. The Quantum entanglement study combines topics in areas such as Open quantum system, Many body and Entropy.

- The birth of topological insulators (1738 citations)
- The birth of topological insulators (1738 citations)
- Topological invariants of time-reversal-invariant band structures (1361 citations)

Joel E. Moore mainly investigates Condensed matter physics, Quantum mechanics, Quantum, Topological insulator and Quantum Hall effect. His studies deal with areas such as Quantum spin Hall effect, Electron and Magnetic field as well as Condensed matter physics. Joel E. Moore combines subjects such as Lattice and Scaling with his study of Quantum mechanics.

He has researched Quantum in several fields, including Renormalization group, Classical mechanics, Statistical physics, Integrable system and Conservation law. Joel E. Moore has included themes like Topological quantum number, Topology, Surface states, Surface and Topological order in his Topological insulator study. Joel E. Moore frequently studies issues relating to Mathematical physics and Quantum Hall effect.

- Condensed matter physics (76.71%)
- Quantum mechanics (65.86%)
- Quantum (32.53%)

- Condensed matter physics (76.71%)
- Quantum (32.53%)
- Quantum mechanics (65.86%)

Joel E. Moore mostly deals with Condensed matter physics, Quantum, Quantum mechanics, Topology and Topological insulator. His research in Condensed matter physics intersects with topics in Electron and Quantum spin liquid. His Quantum research incorporates elements of Renormalization group, Mathematical physics, Quasiparticle, Coulomb and Kinetic theory of gases.

Much of his study explores Quantum mechanics relationship to Point reflection. His Topology study combines topics from a wide range of disciplines, such as Charge and Scattering. His study in Topological insulator is interdisciplinary in nature, drawing from both Surface, Quantum Hall effect, Dirac fermion and Floquet theory.

- New frontiers for the materials genome initiative (82 citations)
- Diagrammatic approach to nonlinear optical response with application to Weyl semimetals (43 citations)
- Diagrammatic approach to nonlinear optical response with application to Weyl semimetals (43 citations)

- Quantum mechanics
- Electron
- Condensed matter physics

His scientific interests lie mostly in Condensed matter physics, Quantum, Weyl semimetal, Mathematical physics and Topological quantum number. His Condensed matter physics research incorporates themes from van der Waals force and Electron. His work carried out in the field of Quantum brings together such families of science as Toda lattice, Inverse scattering problem, Quantum Hall effect and Coulomb.

His Weyl semimetal study integrates concerns from other disciplines, such as Position and momentum space, Charge, Helicity, Nonlinear system and Magnetic monopole. His Mathematical physics research is multidisciplinary, incorporating perspectives in Matrix, Quasiparticle, Distribution function, Kinetic theory of gases and Invariant. His research integrates issues of Time evolution, Gapless playback, Topological insulator and Floquet theory in his study of Topological quantum number.

This overview was generated by a machine learning system which analysed the scientist’s body of work. If you have any feedback, you can contact us here.

The birth of topological insulators

Joel E. Moore;Joel E. Moore.

Nature **(2010)**

2802 Citations

Topological invariants of time-reversal-invariant band structures

Joel Moore;Leon Balents.

Physical Review B **(2007)**

2347 Citations

Unbounded Growth of Entanglement in Models of Many-Body Localization

Jens H. Bardarson;Frank Pollmann;Joel E. Moore;Joel E. Moore.

Physical Review Letters **(2012)**

824 Citations

Magnetoelectric polarizability and axion electrodynamics in crystalline insulators

Andrew Essin;Joel Moore;David Vanderbilt.

Physical Review Letters **(2009)**

805 Citations

Three-Dimensional Topological Insulators

M. Zahid Hasan;Joel E. Moore.

Annual Review of Condensed Matter Physics **(2011)**

645 Citations

Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles.

Oleg V. Yazyev;Oleg V. Yazyev;Joel E. Moore;Joel E. Moore;Steven G. Louie;Steven G. Louie.

Physical Review Letters **(2010)**

515 Citations

Topological insulators: The next generation

Joel Moore.

Nature Physics **(2009)**

475 Citations

Thermal conductance of thin silicon nanowires.

Renkun Chen;Allon I. Hochbaum;Padraig Murphy;Joel Moore;Joel Moore.

Physical Review Letters **(2008)**

451 Citations

Antiferromagnetic topological insulators

Roger S.K. Mong;Andrew M. Essin;Joel E. Moore.

Physical Review B **(2010)**

444 Citations

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices

Jayakanth Ravichandran;Ajay K. Yadav;Ramez Cheaito;Pim B. Rossen.

Nature Materials **(2014)**

437 Citations

If you think any of the details on this page are incorrect, let us know.

Contact us

We appreciate your kind effort to assist us to improve this page, it would be helpful providing us with as much detail as possible in the text box below:

University of California, Berkeley

Lawrence Berkeley National Laboratory

Harvard University

Stanford University

Max Planck Society

University of California, Berkeley

École Polytechnique Fédérale de Lausanne

Rutgers, The State University of New Jersey

Iowa State University

Stanford University

University of Sydney

University of Göttingen

Ford Motor Company (United States)

University of Maryland, College Park

University of Liège

Hunan University

University of Pisa

Leiden University

University of Miami

University of Michigan–Ann Arbor

Grenoble Alpes University

Pfizer (Canada)

Hannover Medical School

University of Reading

Stony Brook University

University of Sheffield

Something went wrong. Please try again later.